WA . <U)

TIVE SINULATION.

:
i
m

14
$
J»
$
¥
L
8
i
Q
:

" AUTONATED I
VERSION 50

‘

w."w. a’n‘\"\"

4'

-\~"‘- \-’.‘; '.(""5? "

\-‘\ﬂn'\v

“

& e e .

£

o

ﬂm

L =

Mz e

|

1’.

o

I‘-
=
=

B

L
[
[
=
[
-
Loy

2l

L

w
o

33
| &

L

01'

w B

I4-0

B JE

'F w
N

.:"":"(\v -r .j}.h.‘in. W

..\.“e i i

RRRRRRRRSR

s Afat
A

RIS

o

SR,

[0S
S

.,

- Sx_&‘;"
-

A

- .

ead

S

B PR A PANS el =y =, e -
'15'?"""’ . - |' o Ea 4’.{0{,“ o

T AN S sl

b 3
X L N

t.‘_

-

Pmmmmv.vmmmmwmmmmﬁwtmwm. 8.%a® Sk WO RN U RTS ATAT RSN

‘I“; T C(m} *

ESD-TR-87-228 CDRL 105

Automated Interactive Simulation Model (AISIM)
VAX Version 5.0 User's Manual

VICKY ALLERTON
GLORIA BOICE

SUSAN SWEET 3
pUGL
- °
[PR
| ol < .'c
Hughes Aircraft Company 5”?
L) Ground Systems Group Nr‘
()] P.0. Box 3310 >
= Fullerton, CA 92634 2
q R s
» 0
i 29 May 1987 ""-5;1
Q ” l't:
< o
N
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED bj?‘
PO
b,
;'\.t'
@

o A
-'.‘-

DTIC

ELECTE
. DEC 3 11987

“H

1" 2 - K
® s
o o _th o,

o

A
LA

X
"‘l‘ 5

Oy
I I

5 e sdey Ty
e \" L Ay 5

. .
RS

Prepared For

-

ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

DEPUTY FOR DEVELOPMENT PLANS AND SUPPORT SYSTEMS
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

g7 12 21 117 &

* M

.y o P L VR UL NEL STC T S, Oy
[P AL -"-!f!-':- Lo P L

ST AL e MAARANEE GRS SR N P AT S A v -

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup=
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

St te B g sl gt var aeen ree jeanid and (s sppras

T

B SN N < = R Kl

K’M 9/77——

bhiar e st
i I T b L pq!'xnu_nl_'_. [
%<n;qnmenr Y P o

AN ,‘_\A‘l Jf

=E gy &

e

«m ll_.m_ NI, . Tty AT

|

e X KB PPN

o

—— w3 & A

— e

M T R s s N R o S e RO A P A T vy e vy
’ N BN "J-‘ 'I.",.', A -" \J-'-\‘J- n’.h .)\ ..-'\..-‘r.p_ - -.A";:"‘-\.a\.r" -‘_'\-A'A_A\-A PO REY 0T AT NS W WY ANA A A

\
“
u
Unclassified
i‘:.: SECURITY CLASSIFICATION OF THIS PAGE :
)
) .
,::c, REPORT DOCUMENTATION PAGE
A/ 4
:‘: 1a REPORT SECURITY CLASSIFICATION tb RESTRICTIVE MARKINGS
fl P - €a£?
K] Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORI
o . Approved for Public Release; Distribution
W 2b DECLASSIFICATION / DOWNGRADING SCHEDULE Unlimited
Ny W
':‘ b 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) t
X CDRL 105 .
oy ¢ 1854895-2 ESD-TR-87-228
. 6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a NAME OF MONITORING ORGANIZATION
g Hughes Aircraft Company {If applicable)
;: Ground Systems Group HQ, Electronic Systems Division (XRSE)
:;: 6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code) p
i#Q P.0. Box 3310 Hanscom AFB ‘
; Fullerton, CA 92634 Massachusetts, 01731-5000 ‘
::l‘ Ba. NAME OF FUNDING / SPONSORING 3b OFFICE SYMBOL {9 PROCUREMENT (INSTRUMENT (DENTIFICATION NUMBER
;~l ORGANIZATION (If applicable) |
.e
u —Electranic Systems Division XRSE F19628-86-C-0070 X
WOt 8¢. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS I
. '3
) Hanscom AFB PROGRAM PROJECT TASK WORK_UNIT
ELEMENT NO NO NO ACCESSION NO
: Massachusetts, 01731-5000 s
B L™ J
k!
; :: 1V TITLE (Include Security Classification)
Wy Automated Interactive Simulation Model (AISIM) VAX Version 5.0 User's Manual)
W Y
Wy 12 PERSONAL AUTHOR(S)
L Yicky Allerron, Glor Boice. Susan Sweetl
V] 13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [1S _PAGE COUNT
d ; 372 '
\5 Final FROM 5/14/86 0 5/15/8 1987 May 29 !
'\3 16 SUPPLEMENTARY NOTATION ¢
"‘Q ‘)
L
A 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
B FIELD GROUP 5UB-GROUP AISIM
[»
s Acceptance Test
Y Test Procedures
,).:-, 19 ABSTRACT (Continue on reverse if necessary and identify by block number)
This document is the User's Manual for the Hughes developed Automated Interactive
Simulation Model (AISIM) Version 5.0 for VAX 11/780 hosts. This manual provides
:g the user with a comprehensive guide for using this system to perform high level
N simulation of operational and distributed data processing systems. ﬂ
I‘-.
», d
D, "
F o ['
2 .
N
fﬂ
':‘,-\
4
N ‘
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
oy O uNCLASSIFIEDUNUMITED [SAME AS RPT C1Dnic USERS Unclassified "
'
Wy 22a NAME 0 15:(%1 SIBLE, INDIVlDw& 22h [ELEPHONE (include Area Code) | 22¢ OFFICE SYMBOL 0
L Michae erriman USAF
o o (617) 377-2716 XRSE ‘
) . >
:... DD FORM 1473, 8amaRr 83 APR edition may be used urtil exhausted SECURITY CLASSIFICATION OF THIS PAGE ¢
0) All other editions are obsolete T
i UNCLASSTIFIED
"n L
n_* g
g

rsr f f\f 7

ARG YO A Y S G

TR AL ALATLG IR 00 L LG L DR 0, L EE LA IR UL CORR U R 08

Section

INTRODUCTION seveeesosscoscvosccvsentscoscssosasosscvssasasssons
PURPOSE AND SCOPE sucevecessssnrsancsonssssoascoacaacssns
ORGANI ZAT ION
DOCUMENTATION CONVENTIONS cecveessecesaocssvencscascnne
APPLICABLE DOCUMENTS cececsccescecsscocsssesscasnsenns

1

1.2
1.3
1.4
AIS
2.1
2.2
2.3
2.4

. e
“« e @
*

BB R r— bt = = = = = = = O CO =1 Y U W N

N~ O WO-JdJO WM wvr—~O

e & & s ® e »
" e e e o

teessean e

Wi W iwwiwWwwwwWwWww wwwwwwww
O WO OO OVOWYWOLOYWYOWOWWOWYOWWWWWOWOWOoY

TABLE OF CONTENTS

9 66 6000056000000 000 2000000000000 000s006000s0n

IM CONCEPTS s oeeecensscosossssocasscsssssnssssossscnnsoncsns
CHARACTERISTICS OF SYSTEMS MODELED BY AISIM c.ic.cccese
MODELING oeeoveconsonsasossocensssossasassossassscnsas
DESIGNING MODELS «evessucsocccnsannsoscsssncsssssasons
CONSTRUCTING AN AISIM MODEL ¢csevecccacacccscccassnnss

Charting a Paper Model .iceecvvacccecncennnns

Defining the AISIM Model eevceeccccscscaccans

AISIM MODELING ENTITIES ccceceeecvsccccesccnnacscncass

IM ENTITIES AND OTHER MODELING CONSTRUCTS cevecccecccoancs
SCENARIO ccseececesvsenconsosscscasccssscssssssssssncnne

JOBAD covveeceoesaasocsssecstcscsasessooesscascatonsassssne
ITEM ceeecocoocaceooosonsssessssssansonssssssossnssssoscs
USER DEFINED QUEUES ciceesesscccsesccocsncosscsscncosscsess
SYSTEM DEFINED QUEUES teveeeseoscscsscsccecscsacssosanss
States Associated with ResSOUrCES ccevecscrone
Cross Reference SetS veceeessscssscecasccsasns
RESOURCE s eteocsccoscasesssacsesscasscssassscssscssscssses
ACTION ¢veeessccccocosscacsssrsosssososscssscsosnssasass
PRIMITIVES cvecescvcsoscessosccscsnsssssscssssssossocscsaes

60000 LLIIP IR LIS NELEROOOOOINERTOEOSEBESIREOEOITETS

ASSIGN .eeevececcosornnsoencossccsrsovesssccnns
BRANCH ceveceetosescoccesossoscsssassssaosncne

CALIL T 0 00 ¢ 9 05 0O P S B OO EP S OL OSSOSO IS
CRmTE ® 0 0 08 5 000 08O S NP LN eSS PeLSEEBELe e
DESTROY ticevrceccenstsncscnccssscsactoansnsses
ENTRY ¢oeeerenccnsscscsaosssocesoscsnsssncannsse
EVAL sicevecotncecoctsnsscocscnnnsann

FIND seeeeenncenansn

LR A N)
L B I I A SR)
L R A I I A R I O N)

Page

— bt
}
G b

k)h)h)w)%)h)k)k)
b WW N

WOOIJIANNWRNODNABEH IR WA - —

-h-b hlululh)hlh‘h)h)&)h)k)N)N)P‘P‘H‘h‘h‘k‘&)\)b-h)h‘

4wssion r

u‘u)u)u)uJu)u)h)h)hJu)th)thJV)MJUJUJQJU)UJUIQJQJU)QJ

=45 GRA&I
3-46 TAB
3~-47 rounced
3-43 .f1catlo
3-50 -

3-51

3-52
3-53

B N, A AT AR B S AT AT RTRI A FETL TR

(I S

ribution/ L
Aaailablllty Codoa

.f:f:f:f:rfp?

A TS Y YRR NG Y S Y

3 SUSPEND steeesecesoccassossascssacsnossscosscnss 3-5
4 TEST teeencesovecerossonovsessasesassssssnsens 3-5
5 TRACE teevecssessesccsosososcsassnsasssosnsscsss 3-5
6 UNLOCK ¢evvescscssseocenssssoscasosassssnsncs 3-5
7 WAIT ceeceeososesoscacsecsaccoscsssncssocassosnes 3-5
8 WRITE teevecesesosesscasossccacosssossossaasnnas 3-6
3.10 LBGALPATH TABLE — NODE ~ LINK cececcocscesoccsscancnes 3-6
3¢1]l FILES tcececocsccocsascscesossososaossnsscssssscensasscsssnes 3-6
3.12 TABLES cvvecersoosossosvonsssoccanessssssssesscsasncssans 3-6

3.12.1 Discrete TableS ceeeeceenesense cesescensscsane 3-6

3.12.2 Continous TablesS tecessecccrecscscsssasscanse 3-6

3.12.3 Alphanumeric Tables .iceiceeesccccsccecsacssee 3-6
3.13 ATTRIBUTES «teescccsesssasosscsossoosscccssassssaancens 3-68
3.14 CONSTANTS AND GLOBAL VARIABLES evevecocsssecoscansssnsns 3-69
3.15 LOCAL VARIABLES ctececoasoscsacsncsascossosccnssccsnsee 3-71
3.16 ALPHA LITERALS ceeseesvrccosescescsscesosssssonssscocs 3-73
3.17 KEYWORDS coevcecessscsescossasosancsoscncssssssasssnccs 3-74
3.18 MESSAGE ROUTING SUBMODEL «cseesesconssovocsoscssonsasscns 3-76

4. AISIM SYSTEM OVERVIEW AND SYSTEM INITIALIZATION eceeoeccocese 4-1
4.1 REACHING THE AISIM READY LEVEL s.eveeeecscsccccccscens 4-3
4.2 ACCESSING AISIM HELP sscvecccctoccssccososvessascssans 4-4

SIM READY LEVEL cevevececcscsoecacssssasosnsnsncansccsassass 5-1
1 INITIATING AN ANALYSIS SESSION scececennsocescccascans 5-4
2 BACKING UP A DATABASE tcevstcocsseccscccoccnsssnessoans 5-6
3 RUNNING AN ANALYZE SESSION VIA BATCH MODE «.vevveeeecee 5-7
4 CHANGING THE CURRENT PARAMETERS ...ce.. cesens cesecaens . 5-10
5 DELETING PROJECT FILES seevsecccscoscccasccarssssassan 5-11
6 INITIATING A DESIGN SESSION ...sccee tesssaneesnas veeee 5-12
7 VIEWING OUTPUT REPORTS cvvvtveeccnanooscsssccsooooscanaa 5-13
8 RETURNING TO VAX/VMS READY LEVEL ...c... cveseesesenene 5-14
9 CREATING AND EDITING AN INPUT FILE

FOR THE READ PRIMITIVE evccvecesocconsooncsccnonosnans 5-15
5.10 CREATING A MODEL LISTNG ¢vevecrcecccoces sesserecveenas 5~16
5.11 HARDCOPY OUTPUT OF THE PR)CESS FLOV\CHARTS ceesecevenns 5-18
5.12 OBTAINING HELP FROM THE SYSTEM «.vceveencnvsnocncosons 5-19
5.13 INITIALIZING A HELP EDITOR SESSION Seessseernans 5-21
5.14 EXERCISING THE LIBRARY FACILITY cocccovccsncsscasccnsss 5-22
5.15 LISTING THE CURRENT OPTIONS .eicoceccoscossceconcans oo 5-23
5.16 LISTING THE COMMAND PROCEDURE LINES ¢cecesacsnsascacess 5-24
5.17 DISABLE THE LISTON OPTION ...ccovcevnssseses Ceesasses . 5-25
5.18 DISABLE AISIM MESSAGES .ccticecevescossnsnans ceserrens 5-26
5.19 DISABLE MSGOFF FEATURE ..cc.eesn ceteraccrtsssessotsnans 5-27
5.20 PRINTING OUTPUT REPORTS «eeveiuvees teseseserasasseneans 5-28
5.21 INITIATING A REPLOT SESSION ceseceesanes cesene teee 5-29
5.22 RESTORING A DATABASE
(AFTER A CATASTROPHE HAS OCCURRED) «teeetsnensacnncsns 5~-30

6. DESIGN USER INTERFACE (DUL) veeeecserescsccncsnsasans ceeesaas 6-1

6.1 DUI COMMAND SUMMARY +ovveveceaccannnnnnnn cetesseans cae 6-5
l.1 DUI COMMAND: ARCH ...ciceiiecrccenccanncanns 6-6
1.2 DUI COMMAND: COPY ..cenieccnnccosnnn cetessaae 6-7
1.3 DUI COMMAND: DELETE tedsaceesscesanans 6-8

OO
. .

iv

PFM R AIL T

N A A DA AN

DUI COMMAND: EDIT ¢occeeoscsscosvoassscaaass
DUI COMMAND: END scviceescccncssosanoconcnons
DUI COMMAND: HELP s.ccccccncscccncosscssanns
DUI COMMAND: LIST tevsecccseascosnsccscanaaces
DUI COMMAND: SAVE c.vececsscocenscssccconses
DUI COMMAND: UNITS ceoeeeconccosnossesccanse
Termination of a DUL SesSSion .escecscssscsnss
EDITOR INTERFACE (PEI) cevecsscsrencccsocnsssa
Use Of the PEl svcecvcecesnsosconssoncsssnanss
PEI COMMAND: BOTTOM svvcecacescsscsasssancns
PEI COMMAND: CHANGE .ieceeecovessassscnsanse
PEI COMMAND: DELETE ..ceecesaccsseccncosssss
PEI COMMAND: DOWN vieeecesccsscssansscssnane
PEI COMMAND: DRAW c.sceccsscsscassescosscsscs
PEI COMMAND: END ceccieevccscccscancsescsscncs
PEI COMMAND: HELP ticcecevsoccccascsscnnosnsns
PEI COMMAND: HOLD ¢.veevecccoscsncssonconnns
PEI COMMAND: MENU t.csecesccssosscssssscasecs
PEI COMMAND: NODRAW .veseccecccecssescacnnas
PEI COMMAND: PLACE .cceescvcccosscsscscosces
PEI COMMAND: REDRAW .cccoveccsccasccscsccocns
PET COMMAND: TOP ¢cecessosossccenscssosssaase
PEI COMMAND: UP ¢ctseenccnscscssssoasccassas
Terminating a PEI S€SSiOoN sseeecevcsssccocsecs
ECTUURE DESIGN EDITOR (ADE) sceecececcascocncasens
Concepts For Using ADE .ccevevconssssacsonnse
Use Of the ADE ceeevessoccrascsscssssrssccases
ADE COMMAND: CHANGE .vsvoseseossccsssonscssnsns
ADE COMMAND: CONNECT seeccecsssccasnscncsons
ADE COMMAND: DEFINE ...evececcosaccscccascns
ADE COMMAND: DELETE seveeesoscocscccosanaaos
ADE COMMAND: DRAW ..cccovsevssossnncscssoncses
ADE COMMAND: END c.veesoosevccoscescsscsoassse
ADE COMMAND: HELP t.ceoveoessonossecssecnnsss
ADE COMMAND: LIST veeseescesoscssassoanosoes
ADE COMMAND: MOVE ..vessecosccccssosocncnsnes
ADE COMMAND: NODRAW ...cccovecensconosocssss
ADE COMMAND: PIACE tivesvecssacesccecnsccanns
ADE COMMAND: RECON svveessesssssssacsacansse
ADE COMMAND: REDRAW .cecevevececaccnncass o
ADE COMMAND: SAVE .(..eececcnnscsanncscns cees

= b b

! ; &
b—-»—-r—'r—‘y-w—a»—‘r—-v—‘r—‘\om\lmmbwl\)r—‘H»—-o—‘r-ar—-r—‘b—‘v—‘\.om\Jc\mbwwb—-gg\omﬂo\wh
|}

....
») .
| U
DN DD BB WWWWWWWWWRNRNNRRNN NN b = D

.
.

LOAANNELE WO NI &W—O

[o 20«2 W= e W« \ W e Mo W e)0 o N e A0 e J0N e AR W o AN e AR R, o B oA N ¢ N0 A T e A N0 A R o A 0Y6)
. & e

.

|

; >R
WWW W W W W WIWWWWWwWWWwWWwWwWORDRODRNNNNDMODNODNNNODND OO
HoOowmbs W~ O

6.3

.
.

'
[SANCLIC IRV I)

.
.

w5

O\O\C\G\c\GNG\O\O\O\G\G\G\O’\O\O\O\O\O\O\O\O.\G\O\O\G\O\O\G\O\O\C\G\O\G\G\O’\O\O\O\O\G\

[N =2 0«20 W W e 0 e W« We We W0 W) B0 A0 e WA N oA« A0 o))
X dOUNMHEWNOWLCO IO PEWN+—O

oo wp—O

" .3 -
- .3. ADE COMMAND: WINDOW «evvvevocsncnnceenneans 6=59
:f . Termination of an ADE SESSION seseveosocnnces 6-60
X 7. ANALYSIS USER INTERFACE (AUL) veveennrrnnenn. AU B |

. AUL COMMAND: CANBREAK « oo vvennnvennenns DU A

, . AUI COMMAND: DEFPLOT +vovve.... e eeeeeeneaeaan eenn. 7-8
») AUI COMMAND: DELETE teveveeennrennennes U S)
AUT COMMAND: EDIT veuevvens e eeeeanaan Ceereeneaaane. 7-13

AUT COMMAND: END ceverieeesvtinesnonaasoncnaacss N 7-14
AUL COMMAND: GETcieveee.. e rttestttetiesetsnaenns 7-15
AUT COMMAND: GO et sesrseeasses e cereeranann 7-16
AUI COMMAND: HELP cecersenesteanens ceereniannse 7-17

N B R S N A S N)
e e s s e
O~ bW -

SR L SR CH S OGS L GO ¥, N A P R KR Y, o T

10.

11.

NNNANNI N

b b b et b s D
AN W —~O

g
2

e & o o o o &
OO0 ~JOU b W)=

Qo 00 00 0O O GO 0 0o

AUI COMMAND:
AUI COMMAND:
AUI COMMAND:
AUT COMMAND:
AUI COMMAND:
AUI COMMAND:
AUI COMMAND:

INFRES sececaavecacsocncncossoscsconnsns
LIST ® 5 0% 0000 00 0000 LOP0 P800S EPsesORTEEEES
LISTVAL cevceccceracossnnsosascanssnnes
PLOT ceveoeecrscessesctsacansooncosacnss
SAVE tvrveceesecessssssansoscncacscnsane

SETBREAK 90 eP 0000 LS LLIRNBOLEGEOIONIECUSIOOEOON TS

UNITS © 000000 000000000000 0000000000s000

.

TEMIMTION OFANAUI S&Im ® 0 0 00500 00 0O e N SO e e

USER INI‘ERFACE (RUI) ® 9000005800 PDOEOCIOLSEON BSOS SISO E

RUI COMMAND:
RUI COMMAND:
RUI COMMAND:
RUI COMMAND:
RUI COMMAND:
RUI COMMAND:
RUI COMMAND:
RUI COMMAND:
RUI COMMAND:

CLEAR ® 0000000 s a0t 0s s sEt L0000
DELEIE SR OSSP L essCRLNLPNLESIELREOEOSIESIOEPROOE

E:ND ®es s00csv e

Pe s s 0000 000c00 00000000

GEr #0000 0000000000000 0800000000000s0es

HELP e s 0ccs 000000000

LIST LRGN A R A I I A A I A N N I I B B RN B R B S SR A)

Pwr © 00 8000080000000t s e eePes . 0RO RssE

SAVE €@ 5800000800000 00es000000s008000s0ss00

UNITS e 88000 008

HARDCOPY USER INTERFACE (HUI) vececvesecoecococncsascnsscsans

LIBRARY USER INTERFACE (LUI) ceceeecoccccns

10.1
10.2

10.6

11.1

LUI COMMAND:
LUI COMMAND:
10.2.1 CoO
10.2.2 CO
10.2.3 CO
10.2.4 CO
10.2.5 CoO
LUI COMMAND:
LUI COMMAND:

5
:

MI
MI
MI
MI
MI
MI

E'—‘b—‘r—u—w-ap—-
[sNeoNoNol [eNoNoNeNoNe]
« P4t o o o o e o

Ty oo

e e o o a
AW WN

.
ST
. o

MO

. .

o .

2w N
3

st

HEI COMMAND
11.1.1

e® s e0s et 00t e .

CHECKIN seeeenecocoaes

LI IR I R A A A R N R I]

COMMMAND:

CHECKOUT sevvvecvsenecance cecsesnrne
COMMMAND::
COMMMAND: END teveevocess cesessessanne
COMMMAND:
COMMMAND: HELP scevceeoercsssccoosnsso

CWD: LIST @ 40 0 58 00 088 PSP O eSS0 0900

CONVERT evesosevoscosecooccecrsnonnscose

HELP ccecveecceneceenss

MERGEIN ccesevvcces
COMMMAND: END .ecccevess seserereseenes
COMMMAND: HELP cceevecevecens cseseneee
COMMMAND: IGNORE eeseecess ceresesesens
COMMMAND: INFO s.ivvvaeecens seevesaseas
COMMMAND: RENAME ccccvoccsccocncaccons
COMMMAND: REPIACE .cievvecnccnnccnanns
MERGEOUT ¢eteevesccoccsons N
COMMMAND: END .ccvavsnnes cecesasteeann

Se s 000000000

DELETE cevevveccessccccnsscoane

EXI‘RACT S0 aess0 0008000 css s

HELP EDITOR INTERFACE ¢eveevvcans tesesecnsetecanans cacedecans
SUMMARY secesernans crecesrsecscsenans
HET COMMAND: END ccceeesesecocccsnooncncanns

HEI COMMAND: HELP ...cicectcnctccncnncanas .

11.2

11.1.2
11.1.3
UPDATE (UPD)
11.2.1
11.2.2
11.2.3

HEI COMMAND:

Update Command SUMMALY «eeeovoescccnnsocss
UPDATE COMMAND: ADD seeveevncecvacsccnnass
UPDATE COMMAND: CHANGE ...ceveevnvencoenas

vi

S

LAY

7-19
7-20
7-21
7-22
7-24
7-25
7-26
7-27

N —=O

oooooocoooolocooooooo
bt b= D S O UV B W

A AT N AR R A W ERS ST R LT T R AT P CE e ERT IR

3
™

I

O R OO R N L

T IR

>-—

e d % 15 VL U,

UPDATE COMMAND:

- i - [N R WY Wy

g ot

B L F AR L A |

. \ ! J
RS R AN e

DELETE cvveeeeevescvvanasenss 11-11

UPDATE COMMAND: END ¢eceeecscecsoncnnosonaoses 11-12

UPDATE CCOMMAND:
UPDATE COMMAND:
UDPATE COMMAND:

12. FILE MANAGEMENT USER INTERFACE (FUI)
FUI COMMAND SUMMARY «eceveecsocsceacosanarsoavaonsnases 12-3
COMMAND: DELETE «veeevvecscecccnscanaosee 12-4
COMMAND: END evecevececanceccocsanscssssse 12-5
COMMAND: HELP .vveecencevaccesssaceasseses 12-6
COMMAND: LIST tevvescecencesoesoccsasesss 12-8
COMMAND: LISTOFF .cveveevecsvccvcvssesssas 12-9
COMMAND: LISTON ceeeesseseccsaseseasassss 12-10
COMMAND: PLACE cecevconseocesesnscccnasss 12-11
COMMAND: RENUM ..ccoevsesenncsnnnsnnoasss 12-12

12.1

13. AISIM SIMULATION REPORTS

13.1
13.2

13.3

APPENDIX

APPENDIX

™

—
[\
.

O ~J AWV & W -

. .
el el
.

= bt b b e
[SESESENSE SN N S
A

FUI
FUI
FUI
FUI
FUI
FUI
FUI
FUI

HELP soeecececcaccoaonsoanansss 11-13
LIST ®es s e sarserses st et 11-15
SAVE tiveeeerscrcsnncessassss 11-16

Secssesrssers s s s 12-1

INTERACTIVE RESULTS AND HOW TO OBTAIN THEM
REPORT RESULTS AND HOW TO OBTAIN THEMccvveneesses 13-2

Constant RepPOrt .ecveeenceccncossscccccccenss 13-8

Variable REPOrt cccveervscesnensesnscanasaess 13-9

Item REPOXL cececcevceoncossasssssassncnscses 13-11
Resource REpPOrL s.ceseecnsonscssececcnnnessss 13-12
ACLION REPOIL cveeveecescoscscosescsnssssesses 13-14
QUEUE REPOIL ceveeecccecesscsassnconssssaness 13-16
Process REPOIL ceeeeceesoscensovescsccecnsses 13-18
RELEVANT TO VIEWING OUTPUT REPORTIS «¢c...
TOP, BOTTOM .cocecesneccnsacscsnsessassaesass 13-21
UP, DOWN coccecenccovcscsacsssscossssnnssnsnee 13-21

13.2.1
13.2.2
13.2.3
13.2.4
3.2.5
13.2.6
3.2.7
COMMANDS

.3
.3.
3
3

FIND

S0 00 c0 0000000000 000000 PRI BRLEIIOLEENE 13_1

se e 13-1

eese 13-21

ceecevserrtetsvserererrtccsrsvessassasess 13-21

LIST ceeveeccncooscecscsssscsoocscssceennoses 13-22

OPERATIONAL PROCEDURES AND IMPORTANT INFORMATION .
IMPORTANCE OF DATABASE BACKUP AND ALLOCATION «....
ABNORMAL TERMINATION OF A DUI OR AUI SESSION ceceecess A-1

AISIM PLOTS cevevenssanen

ccee A-1

cees A-1

I R N N R R R N A I A I N N A A X IR I I A-Z

PRODUCING HARDCOPIES OF THE TERMINAL DISPLAY .ceveeeas A-3
RANDOMNESS IN RESULTS ccceevecocoesasnsncssesonnsssces A=D

AISIM ERRORS
GLOSSARY seseoconsocrocncans

MESSAGE ROUTING SUBMODEL .cocvvevees

LY, P G T S T W W R
L%, o LaX A , O,

vii

o

L PR

eas s s s o0 eee s e

N e e T e e N e

ceee B-1

~ " “
¥ BV ot B Ae® Ta¥ |

* B R e B & a e e -,
AR AT AN

)
- -

..-,J,-
aﬁﬁﬁ?hf@&

.,.,,-
AR

T
R

LT
ﬁﬁt~ﬁ

®
e

-l i gt LI
g Y,
P EF T RLAA]

b
P

P A .
2R

) i / W -, ~
B R o R A A R R o R o T o ey
s
&I’
A,

>

e @

LIST OF ILLUSTRATIONS

P LD PN
I-'.'...

FIGURE PAGE

[

L

oAy

AISIM Entity Relationships ceeececereecccntceccnanancceonns 2
Form for the Scenario Entity seeeeeresecececcevecnssncannne 3
Form for the Load Entity .eceeesecscerassscsocsannsnssccanes 3
Form for the Item Entity .eeecececsceesoscecevenscossecscans 3
Form for the Queue Entity .cecevecencecvcncesstoecnrsscannes 3
RESOULCE SLALES sreerectonscncetsosvsnsscssacrsacocsssonssns 3
3
3
3
3
3

r~

)
e

Form for the Resource ENtity seceseciessessscacanssssannaan
Form for the AcCtion Entity ceeeecevacoccecscvocccassscsaces
Initial Form for the Process Entity ecesecececeneccseancnans
Form for an Item Passing ProCeSS seeesecessscccococssoonsoes
Form for Parameter Passing ProCeSS «.essesscttcccessccssnns
Sample Process Diagram ceeeseeseosssscsacssscecassossasanes 320
Graphical Representations of Process Primitivescce. 3-23
Form for an ACTION PrimitiVe sceceececcsssccccscassensssneces 3-24
Form for the ALLOC PrimitivVe eeveeeessscssescsscccssaasnses 3-26
Form for the ASSIGN PrimitivVe «icseeecssccssssscacanveasses 3-28
Form for the BRANCH PrimitivVe ccecesccccscessssccoscsssensees 3-29
Form for the CALL PrimitivVe ceeeeesscccsscsccsssoscoassenssss 331
Form for the COMMENT Primitive .ceeeevescsccascoscennsassos 3-32
Form for the COMPARE PrimitivVe siescecssscssescccecssesssnes 3-34
Form for the CREATE Primitive ceceecisecscssscscsascsscasses 3-35
Form for the DEALLOC PrimitivVe cicececsccessscsccssscossess 3-36
Form for the DESTROY PrimitivVe cevecececcosccsscssesncannes 3-37
Form for the ENTRY Primitive seeeccececcsoscccecacossssssss 3-38
Form for the EVAL Primitive tccecesccscscccsccrcavsacnsssses 3-42
Form for the FILE PrimitivVe ceeevecesssscscscoccsssocsssnss 3—43
Form for the FIND Primitive .eeeecececscscccsccssscsacssasces 3-44
Form for the LOCK PrimitiVe cescecccecsccsscesasececscescanas 3-45
3-28 Form for the LOOP Primitive ccceescceccscnsssessscassccensce 3-46
3-29 Form for the PROB PrimitivVe .iececesseecsonscsssrsccasevssosose 3—47
Form for the READ Primitive cecececececesscocsnsasasasscasss 3-48
3-31 Form for the REMOVE Primitive ceeeeeecensssccccocvoessasene 3-50
3-32 Form for the RESET Primitive seececeessccoasscsassssasssess 3=51
Form for the RESUME PrimitivVe eeeecececoesssassocssoccsases 3=52
Form for the SEND Primitive sseeeecscecsscssscssscssanssses 3-53
Form for the SUSPEND Primitive ceecececccscesscascscceanrsss 3~54
Form for the TEST PrimitivVe .ececeecessccscsasscsssascessses 3-55
3-37 Form for the TRACE PrimitivVe ciceescecscocssssssscacocasnss 356
3-38 Form for the UNLOCK Primitive teeeveescecaccsscsessnsnasseess 3-53
3-39 Form for the WAIT Primitive ceeececcccsccosessssssssosseocsesr 3~59

)
e

)
he

(]

[}
Pt pd b b e s o] e DD W
O 00 OO NO
¢
FAr RO P ey

Ty

8]
VM WNHHOWONAWUM S WN O

y
i
3
[
LS
o)
s
e}
Y
LY

L Y

e
Ly

wuwwwuwuwwwww*uwwwwuuwwwwww
NN NN b = = = O 0 U R W

ol |
LS S
w
[
(S}
~J

nLh
w
i
(V8]
<3

AL

B
»

w w
[
w w
L)

»

-
w
|
w
wn

AR Ak s
W
)
(VY]
o)

rf.; 3-40 Form for the WRITE PLiMitiVe seeeeeseiereisesnnecennnesenss 3-60
?i 3-41 Sample Legal Path Table ENtries ceeeeeicessececssasesceross 362
’ 3-42 Form for the File Entity ..eceeceicireecieetscncesnnnscness 3-64
s, 3-43 Form for the Table Entity secieieeeerirecectssecancssnaasss 3-67
v 3-44 Forms for Constant and Variable Entities ..eviiecicenneesess 3-69

A}

1

2 Help Database SELrUCLUILE +eeeeseectosenerssocascsasanssssses
-3 Form for the Guideline Help TOPIC cosevernanecneccnassosrnns

4

3-6
3-6
3-6
AISIM Levels Of Operation..ceeeesecceacsoseccsssceessosssss 4-2
4-4
4-5
Form for the Note Help TOPIC ceeevrccnnstcearanerannnss eve 4-6

>,

ix

r¥HEE¢1 e %3

SV VI VT EVT. VY. PV IS IS YR R SR U W T I TE PR T I IR IR T g

FIGURE

| U R T T DY N N R S NN R I TR N
(SN]

R
— O

N~
OOOOOW\J\I\I\J\I\I\I\I\I\ITIO\O\O\O\O\O\O\O\O\O\O\O\U\U‘U\Q
UV B WNHHEHEREWO®OLdOAWU & WRN RGOS WKW -]

p—
fo)
I

13-4
13-5
13-6
13-7
13-8
13-9

13-10
13-11
13-12
13-13

iN'.’\‘M) LT A Sl % T I A AV R TR R S RN TOTHY GV - Sy

Form for the Procedure Help TOPIC ceeesesscacacssssssccecans
AISIM READY Level Command SUMMAIY «ccecscasscscescsooscsaes
Sample Batch Job SUDMISSION secetecenenscnsnccssncnconsanss
Sample Batch Job Submission with Plots .eeeeececenceceanens
Terminal Profiles ccececeeecsneccccescassssassossssnosasnsns
Design User Interface Commands «icceeseccccsesscsescansscsas
DUL Command SUMMALY +seeecevsccsssscssscosseanossossaannsens
PEI Command SUMMAYY « cosseoscessccccscsassosossassssacessss
Process Display with Menu ...eceeieenenceenenccseccennnans
Viewspace versus Workspace in ADE ...ceieecensssseoocnnsens
ADE Command SUMMALY eseeeesescoosecassscassasssassssssasass
Architecture SymbOLlS .eereeecsssecercsnssescnosssosscnssnsnes
Sample ArcChiteCtur® soeeecsseescvosccvasnesssasresrasaransae
Sample LPT Generated by Method A c.iieviieieervrevocennnenss
Sample LPT Generated by Method B cviceeerencscensoncnesenns
Sample LPT Generated by Method C ...vvvenerennrenereccassos
Form for Text DesCriptiOn seceeseeveseressosssssssssasasnss
Analysis User Interface COMMANdS «seeescesssssssscnassansss
AUI Command SUMMALY «ececsssesstassacssssnssssonasasssssoce
DEFPLOT FOXmM fOr IteMS eeevececesasasscacsssssnsnsnssancnss
DEFPLOT Forms fOr PrOCESS . ecesesnsscsocsssscsascssasnsnsnans
DEFPLOT FOorms fOr QUEUES ccecetcescecsocrossaasasascasasans
DEFPLOT FOrms fOr RESOULCES e.eesecsscrsscosssssacsossannas
DEFPLOT Form for VariableS sceeeceeescrcesscarernsncsonnans
Sample PlOL svvveeescecssscenssessasscsossssssssassssasnnana
Sample Form for Selecting PlOtS cicecveseecscssossscorannaen
Sample PlOt ceeveeeccovesssoscssscusosarsrssssscassasassonss
RUI Command SUMMALY ceeevscoccccccsorsscsnnssssosssscassaceas
LUI Command SUMMAYY ceseecsacasoscssssssssasssssasssssnsaesse
Library Utility Data Flow Diagram ...e.ceceeessscscccosnsnns
Checkout Cammand SUMIMALY s eeeeecocncrcossssosnsssasaansasess
Mergein Cammand SUMMALY «ceceeecsceassesssasssasssssssaanss
Mergeout Command SUMMALY «eeeesescossscsscasscsssnnscassses
HEI Command SUMMALY «cecccocosansosssosssssssosssnnsansnses
Update Command SUMMALY «esvercvsvooevrossnsasascsssccnasass
File Management User Interfaceceevecesecenncens
FUI Command SUMMAry seeeecscsececsecsessncscsoncsasasasnnss
Initialization Report - Constants, Files, Tables, and
Global Variables seesesecesvsacsctocnascns
Initialization Report — Items and QUEUES +.vereecscveensas
Initialization Report - Resources and Architecture Legal
Path Table «eieceneeenenenensss
Initialization Report - Actions and Processes ...
Initialization Report - Loads and SCenario ceeeeceececeoas
Constant REPOrt civireceacctrancsccsnsassnnsans
Numeric Variable RepOrt ..eevecececscasancsassnsens
Non-numeric Variable RePOLL . eeeseicncennsstsocsnsncanssns
Item Report seveeeees
Resource Report ..
Action Report
Queue Report
Process Report ...

e 0800000080

N

TSI TS O,

PAGE

(Vo R0 O LR
| L L L I e

!
WIRONNDNNOOFEHEHEEOOOOUVFF OO WWNEUIESENDWOWDNS

LU UL L A T e I e A |
WWwr-r~0O N W w O W IO

oooo\x\l\l\x\)\x\:\x\xq\'lmma\mmmmmo\mmm

AN A

Vs ‘: ‘- 5—.{
Sl

‘.... ,
R AR
LAY

T

¢ ..
*x

Y

e

)

l.'.l' ﬁt'-'
I. l- .,
[L AL)

YRR
l.‘l'

)

o
‘e
»

PR
'
.

DLt
-
0
)

"

. s
Ly

L
.]
-":' .
.

.
i

SONs
R
N,

'v‘n’ﬁd

x
/, :
SN

5
k]

<

N
o

M

INENLN

,.{

G
4

Xy

P
N
I’A

P

-
-

*
7

"

Lile ta it iR b A el et At S0 S S SE R GG A L LU St A AL AR AT AR Al B4 0 i MR a" R A 0%A RARILEAE SN 4 a0 pA g N g "8 g te.

FIGURE PAGE

D-1 Listing Of Process MRS ..uveceneerncsvsncssssssososocoonans D-4
D~2 Listing of Process NODEPROC cevteevensssonsssosesasonnvnas D-6
N D-3 Listing of Process DESTPROC cveeeeasosarosnscsocnsnnssosanaa D-8
D~-4 Listing of Process CHANPROC. . ceeecessesssosssocrcnsocnscen D-10

POy we

Y W |
RO
> '.’.'/_ "". -'_.-'_ [
AT A e)

- L3
v ¥

SRR NL O
A -

v * a e ‘\ *~ b -
Ca el ofan an 2"

A

Eﬁi

Y 4

LT

AL AL ==maris = AR AR L ARG

"

»

{

1

SECTION 1

INTRODUCT ION

\kl.l PURPOSE AND SCOPE

The Automated Interactive Simulation Modeling System (AISIM) provides the

user with the ability to do high level simulation of complex operational

and distributed data processing systems. The purpose of this manual is to
provide the AISIM user with a camprehensive guide for the use of AISIM version
5.0 on a VAX 11/780 computer. ..

1.2 ORGANIZATION

This manual is organized to serve as a straightforward reference document for
the AISIM user. Section 1 introduces this document, detailing the
organization of this document, the document conventions and applicable
documents. Section 2 is an overview of the concepts used in modeling and
simulation of systems using AISIM. Section 3 contains a detailed description
of the AISIM modeling constructs. Section 4 describes the interface between
the AISIM software and the host computer's time sharing system. Sections 5
through 12 present information of the various system user interface levels,
including detailed descriptions of prampts and commands. Section 13 discusses
AISIM simulation results and how to interpret them. Appendix A presents
operational procedures and other information which is useful for the user to
know but not mandatory for using the system. Appendix B lists simulation
error messages with a description of their meaning. Appendix C is a glossary
of AISIM terms. Appendix D contains a detailed description of the message
routing submodel described in section 3.

1.3 DOCUMENTALION CONVENTIONS

The descriptions of AISIM cammands given in this manual use the following
notations to define the syntax and format of the AISIM commands:

1. Commands shown in the format below are equivalent:
DESIGN
D

The latter is an abbreviation for the former.

2. Required parameters are enclosed in braces:

fentity-typel

1-1
T R O L S I T R L T T PR N R P P RPN TN SN LN INE PN PRI I
PN U N AT S A N A AT ST I AT e ST e T A T S AN AT AT

L N GIRa

-
AL A SN

5

VR EPRIIE,

T
-

g T TR

DAFE NPT A% N

.I ‘l' -l. ., -I 'l' -IA L

e X T e,
”
LA .

POAPLLPLEATAER

TYNT L

Sy

THALANNN

AN

.

¢ v
.

A SN

VAR A

f

\f \f v

L T e

3. Optional parameters are enclosed in brackets:
[NOXLATE] .

Default values exist for all optional parameters.

4. The brace and bracket symbols are used only to define the .
format. They should never be typed in the actual command
statement.

braces { 1
brackets []

S. The symbols listed below should be typed in a command
statement exactly as shown in the command statement
definition.

apostrophe '
comma ’
parentheses ()
period .

6. Words in lower case appearing in a command definition
represent variables for which the user should substitute
specific information in the actual command.

EXAMPLE: 1If "database" appears in a command definition, the
user should substitute a specific name of a database
(for example, CONTACT) for the variable when the
command is entered on the terminal.

7. All upper case words and letters in a command definition, such
as a command name or a parameter name, must be typed as part of
the command statement.

8. All command names and associated parameters must be separated
fram each other by the appropriate delimiter, as shown in the
canmmand definition. Delimiters are either a comma or a blank
depending on the context. A blank is entered on the terminal by
pressing the space bar at the bottom of the terminal keyboard.

EXAMPLE: BACKUP (PROJECT(database)]

If the optional parameter is used, it must be
separated from the command name BACKUP by a blank (), ,
l.€. r’ -

BACKUP PRQJECT(contact)

1-2

P Gt T e e

LI SEPEIE NN I IS I N AT AP N e ST AN IS PR ARV AT AR

5
-’ L

-5

b e

. f .
L o o

PR

L

.5\ it o R S 4

S
Bt AN

PO K R » . 420 - Rt "BALMA SRS, i " e Pal el int

When a canma is to be used as the delimiter, it will be
specified as part of the coammand definition.

EXAMPLE: DEFPLOT {entity-typel,{entity-name}

In this example the command name DEFPLOT would be
separated from the required parameter [entity-typel by
a blank and the two required parameters would be
separated fram each other by a cama, i.e.,

DEFPLOT R,resaurce

The references in this document to specific words that are
AISIM entities will appear with an initial capital. This is to
distinguish the reference to an AISIM specific concept fram a
cammon interpretation of the word.

EXAMPLE: Process - Occurrences of this refer to the AISIM
entity.

1.4 APPLICABLE DOCUMENTS

The following documents provide additional information relevant to the
operation and use of AISIM:

\. ~ g .'-~¢ » 5- " W .‘-.\~ LS TR \-l.- .,- _.q...- o .--.~' . -- \..\- R .‘-:F. W LA, SOIREN
» r 8 hd "

AISIM Training Marnual

AISIM Training Examples Manual

1-3

- e . e

AT T AT S A R s s N
A B0 Athial

SECTION 2

AISIM CONCEPTS

The Automated Interactive Simulation Modeling System (AISIM) provides a
tool for the analysis of camplex systems. The tool is designed for the
operations analyst or engineer as a workbench for investigating the impact
of system alternatives. AISIM provides a graphics language for the
expression of systems, a database for storing a system's design and a
simulation capability for analyzing the system. AISIM is applicable to
design analysis of hypothetical systems and to the operations analysis of
existing systems.

AISIM is a computer program that allows for the simulation of complex
systems by a user without the need for the user to do additional
programming. The program can be executed interactively by a user

communicating with a host computer through a temminal, or by submitting same
AISIM operations to be performed in batch mode. By using the host computer in

an interactive mode, an AISIM user can use AISIM to obtain timely data to
support decisions on how a system is to function.

2.1 CHARACTERISTICS OF SYSTEMS MODELED BY AISIM

AISIM supports the design and analysis of systems having any of the
following characteristics.

1. Procedural operations -- Processes in the system can be
described by a sequence of steps that describe the logic of every
operation (e.g., operator actions, operating system logic,
applications logic, man-machine interface, real time input
processing).

2. Parallel Processing -- Any number of processes can occur
simultaneously.
3. Shared Resources -- Some processes require resources that are

contended for by other processes (e.g., two I1/0 requests
contending for a single channel). Queueing is reflected in the
degradation of the time required to complete processes suffering

resource contention (e.g., large queues behind bottlenecks in a
network).

4. Operational loading -- The operation of the system is a
function both of its internal structure and of the envirormental
nressures on it.

5. Process communication -- Processes transfer data and materials to
other processes in the system (e.g., both message routing and
network control information communication can be easily
represented).

2-1

v
X ‘:s,i'c

R
e

e
PRERNR
%
AR
REAY ™
J o
sl

RS
e

®
L

v
.
L A

3
2
y
=

. X
.

.
-
»

.
3 %

r e
¥
R

2
28

3

L0
o

2

72

-

<
Sy

T

T

% F

- v}

- "‘ -;:,
o

'}’ﬂr_'.‘

o _& A

xS
S

Er

O |
..‘}:{ oy

T O

e
L]
R
-
L

22

"-u

-,
<,

2
»

= :.';-
.'{s_r
hAk

" 6. Interconnected network -- Network architectures consisting of
b interconnected nodes can be represented in AISIM. System
constructs allow the user to define the routing of messages .

through the described architecture. AISIM also allows for the

. modeling of systems abstracted fram any particular architecture.
A .

& These characteristics are generic to a large class of systems including

- military, camputer, and industrial systems. -
;

X 2.2 MODELING

M

k In scientific and engineering usage, a model is a simplified (or

i idealized) representation of a system that is advanced as a basis for

. calculations, predictions or further investigation. AISIM modeling fits

i canfortably under this general characterization, but AISIM is especially

: useful for the modeling of systems which incorporate parallel processing

N (simultanecus activity) and networks. AISIM is particularly suited to the
b modeling of embedded computer systems for command, control and

canmunication applications.

There are many applications of simulation modeling in this problem area.
AISIM models are representative, discrete event simulation models used for

1 predictive operations analysis. What this means is that entities in a
; real system are mapped onto AISIM entities that have a very close functional
" relationship. AISIM entities respond to simulated conditions much like the
' real entities do under actual conditions. This is in contrast to functional
4 modeling where the real system is described in terms of equations in

. differential calculus. The emphasis in representative modeling is on

describing the system.

Generally, determining and clearly describing the system is the first
major obstacle a modeler must confront. If a system is in the design
phase, then no data is available on how it will perform or what the major
bottlenecks will be. For existing systems these characteristics may be

; known but the combination of events that cause problems may not be

) understood. In both cases, much can be learned fram modeling the system.

A key concept to keep in mind is that models arc a simplified description
of a system. This implies that same elements of the real system may not
be represented in the model. The challenge in modeling is to represent
’ all the elements of critical interest to the system dynamics in the model.
\ This requires same thought as to the development of the model.

2.3 DESIGNING MODELS)

A model should be carefully designed before bxing built. The key
activities addressed during the design phasce are the following:

o

1. Understand the Model and Collect Relevant Data -- To model any system
effectively, a modeler has to know samething about the system.
Building an executable simulation model requires that the system have
an accurate and sufficiently detailed description. A modeler must be

i 2-2

| *

- LI L. L) . A -~ e = L. N e enm "
K ,,,, R . -\.'\.\ \.‘_\,__.}\". »X ‘Q' AT AT I AN . AN

B U U A P R Y T W Y N LY P U U S U TS 2y, R Y O N Y R 3 O T T T o W W W W I W O s L O A O IO W

aware of the functions performed in a system which affect the
dynamics of the operation. A modeler must also know the

. characteristics of all the elements that perform work, create data,
control processing, interrupt nommal operations and produce output.
This data can be obtained fram design specifications, hardware
specifications, previous studies or empirical testing. It is
important to collect good data because that data becomes the
foundation of the model.

2. Determmine Model Boundaries —— Systems modeled by AISIM generally
consist of many subsystems. The problems caused by the combination
of subsystem activities are of interest to the analyst. AISIM
provides varying levels of detail in modeling a subsystem. Sometimes
the activity can be viewed as a black box. The flow of control
through this box can simply be represented by a delay. This type of
phenomena is modeled by AISIM with the Action entity. Other times,
the characteristics of a subsystem can be represented by a
mathematical function. AISIM has such a functional capability with
the EVAL Primitive and Table entity. If an activity is more
camplicated, it can be described by logic. In this case, AISIM
allows the modeler to go to his own level of detail by building a
Process. Setting the boundaries of an AISIM model is precisely what

: the modeler does in deciding which of these constructs will be used

, to model the elements of a system. A method of paper modeling

’ developed for software design is known as "structured design”. This

. method uses structure charts, hierarchical charts showing calling
sequences, to describe functional processing. This method has been
used successfully with AISIM. An alternate method would be to create
flow charts of the various system functions.

3. Determine Experimental Method -- A model allows an analyst to run
experiments on a system to predict how an operation will behave.
Before any effort is expended in building a model, the desired output of
the simulation runs must be considered. Monitors can be designed to

provide data on the system's operation. Experiments can be designed
to validate the model.

PN A o L v I
Vo

2.4 CONSTRUCTING AN AISIM MODEL

2.4.1 Charting a Paper Model

In building a model, a modeler maps the elements of a system onto the
constructs of the simulation language. To do this, the modeler must be
familiar with the characteristics and relationships of both the simulation
tool and the real-world system. The mapping is not always clear-cut and
usually requires iteration. The modeler charts out what processing takes
place in a system, where resources are allocated, how processes
communicate and where activities initiate. This chart is referred to as a
1 paper model. It may be derived fram an understanding of the system's
functions and a qgraphical representation of its network. On the paper
model, the modeler names the entities in the system that will be modeled
by AISIM entities - Processes, Resources, Items, Queues, Tables, ctc.

2-3

S S L L G N BN S AN TN

2.4.2 Defining the AISIM Model

An AISIM model is built by defining AISIM entities to represent system
entities. This is done interactively on the computer. AISIM solicits
relevant data for defining all design entities.

2.5 AISIM MODELING ENTITIES

As mentioned earlier, a model is a description or abstraction of a real or
proposed system. To build a model with the intention of simulating its
operation, we must describe the model in terms which can be interpreted,
and operated upon, by the simulation system. That is, a system can be
modeled using a prose description; but unless it has some systematic
relation to a computer language, it would be useless as a computer model
because prose is ambiguous. AISIM uses a special set of terms to describe
system structure and operation called AISIM entities. A modeler must
understand the meaning and use of these entities to build successful
models. These entities are briefly discussed below. A detailed
discussion of each of these entities is provided in section 3. Figure 2-1
also provides further insights to the meaning, use, and relationships
between entities and other modelinj constructs.

ENVIRONMENT

SCENARIO
~

ACTION
ALLOC
ASS 1AM
BRAYNCI
Cage .
 DMMER
TAKE ARCHITECTURE CoumanE
CREA'E

N
s LEGAL PATH 852§:722 FILE
‘7 TABLE ENTRY
’\/\‘ EvaL

€ILE
TRIGGL RS £ ING TABLE
\ TAKE PLACE th~5 LOLw

L nne

PRAR

agar CONSTANT
PHOCLSS 9mM:Y|vE$.—1 AL VOVE

RESET

g ALLOCATE n(:' of VARIAULE
St

S LPEND
TEST

TRIGGERAS

TRIGGERS ™Y

MANWULATE TRACE LROSS-REFERENCE
ML GO €
wA T
wlte

RESOURCE

CAN BE
PLACED UPON

QUEUE ATTRIBUTE

v
3
©n

Figure 2-1. AISIM Entity Relationsnins

F‘:’
P4
L4
&
/
X

LN M AL A

7.,

'fh.

RIS LSS,

v,
»

oYy

l',’

»
-
=

= P
s X

= .' 1" [

A

o
t

L

WA,

"-’\I\"‘ r},"’ 7

]

»

-
PR |
-

a
2

Yt

P A

I.'

ARSI AL SANT N
NSRS WAL I ANS

4

-

P
b

2wy
EAEACN
R
S,
- - l'. (] b.\
A
Action - An Action entity is used to represent the consumption of time fjnisix
for any action, activity, decision, etc., that consumes time. Each RPEN"
Action entity corresponds to an ACTION Primitive in a Process. 1he T e
ACTION Primitive is the only one that causes the simulation clock to Y Y,
be updated. A

Constant -~ A Constant is a model parameter whose value does not change
- during a simulation exercise of a model. Constants are used to
represent parameters that do not vary with time or in response
to the workings of the system being modeled.

File - A File entity corresponds to an external file fram which data is
read or to which data is written during a simulation run.

Item - An Item is a transient data element and is used to
represent messages (or materials or even physical objects)
flowing through the system.

Load - A [oad is used to represent aspects of the world outside the
system that trigger the initiation of Processes. Loads
represent the normal burden, i.e., occasional Process

: . .
triggering, on a system. NI
':'\'.'.'.r\
IS s e . . Y e
Primitive - Primitives are logical constructs that represent Sainleg
steps in the modeled system's operation. There are 28 different e
Primitives each representing a different logical function. A ol
sequence of Primitives campose a Process. All of the Primitives arec sALNA
listed below. .
.f_'.':‘-.':" J
0y .-'. >
ACTION AT
ALIOC PRI
ASSIGN N
BRANCH =
CALL .o
e e
CCMMENI' ,,-:‘.p-‘.-k
COMPARE I
CREATE DAY
' '- d.-'
DEALLOC PRI
DESTROY ah
®
L FAom
ILE DAY
F ":‘,;'f{‘;a; .
FIND o
LOCK AR
LOOP SN
- PROB . A
l\ -\ .I
READ N
REMOVE KA SAY
o AT
R.ESu F ~:-_-.l -
‘ RS e
')'\I-':F\.’
@
B '_\'_ «
A
:’\:_-.‘;-.
2-5 NOAH
P
o
.$-‘
'x’¥:‘
- '$'~.:;
e,
o) .'_:vr 'f::f
AHA CHLG AT A A SA LA LG LB

St B 8,0 B ey OTwWYYH » T . T - 3 AR A s Sl 58 Sep o A - Se §'a n'a ¢ » 3 o s v g e i " "] .'
L4

|
1 *
| b
:
SEND A
) SUSPEND
| TEST .
: TRACE 0
» UNLOCK st
WAIT
WRITE A
- e
Process - A Process is a logical description (using Primitives) of)
some or all of the operations, decisions or activities of the tQ}
system being modeled. o
oy
Queue - The Queue entity is used to model an ordered holding area for NN
one or more Items. A Queue may be used to model, for example, a NS
job queue or a memory buffer. A Queue may be defined with a »
maximum size parameter to model such limits as the 3050
maximum number of messages that a buffer can hold before it is \:
overloaded. Queues bear a default size of infinite. '.a
o
Resaurce -~ The Resaurce entity is used to model the mechanisms :{f
(people, CPU, communication lines, etc.) necessary to complete a)
Process. Resources generally have the property of being shared ﬁ::
among Processes. Performmance of a Process can be degraded due oo
to contention for Resources. ;:
oy
Scenario - The Scenario entity is used to model the various o
environments in which a system must perform. A Scenario r
specifies the number of periods of a simulation run as well as NS
their length (which is uniform). The Scenario schedules the o
initiation of Loads. It can also schedule the initiation of o
Processes. M
Table ~ A Table is a user-definable function with up to fifteen pairs »
of data points. Tables may be defined as either continuous, "
discrete or alpha. A continuous Table interpolates linearly D
between numeric points. A discrete Table is a step function ;§$
| connecting numeric points. Alpha Tables are used for f:?
structuring data over non-numeric ranges and domains. e
|
| Variable - A Variable is a model parameter whose value can change during a %{-
| simulation run, either by setting it equal *to a mathematical S
i expression or through reassignment by the user hetween stages of fﬁ“

s a
W oe

a simulation.

i
.

Keywords - The keywords are system-derined variables that provide
the user with information about the current state of the
simulation.

.
(2 U A

'
- %

5 %Y
*

Alpha Literals - Alpha Literals are character strings that are used to
make models more readable and are usced 1n comparison with each other
to determine process execution control.

-
T]
"

)

Y,

N IO I LI N A P R oT C P oy E sl \
Lol inind e, P oy iy sty iy, vy g S VA sy Al 8, LGNt (T)

!
!

SECTION 3

AISIM ENTITIES AND OTHER MODELING CONSTRUCTS

In this section AISIM's entities and other modeling constructs are described
in detail. For each entity, the parameters required to define the entity and
the means by which this data is requested from the user are described.
Included is mention of relationships between the various AISIM entities, where
such mention is deemed helpful,

Note: Whenever entity data is requested via a "form" such as that for the
Scenario entity shown in figure 3-1, any information which is a default will
appear in the form when the form is presented to the user. In the figures
contained in this manual the defaults appear as white words in the black form.

3-1

I' - _w
R

v ey e W v
PR

L5% W ~
I".'I.

‘AN
ry

5]

TR LA U U T R R T T T O T T W W W W o T T W W W W W W TN P o W P T T W o o T 7

ST

SCENARIO

'A R T S S T

3.1 SCENARIO)

L
2

The Scenario entity is used to represent the various environments in which the
system being modeled must perform. Together with the Load entity it
represents the extermal stimuli on a modeled system. -

YvaRll

In a Scenario, the user defines a collection of Loads and/or Processes,
together with schedule time and triggering priority for each. The Scenario
calls for the initiation of activity over time by activating a Process or Load
at the corresponding scheduled time.

EEA AL
RN R

4

- !':

Scenarios are divided into periods whose length and number are chosen by the
user. These periods provide break points at which the user can stop a
simulation to alter a variable or inspect the results up to that point. There
may be up to 14 periods in a given Scenario. The form for the Scenario is
shown in figure 3-1.

scenar 10 ([N
PEFIOL LENGTH: _ A8 XM ~FCONDS OUTFUT U172 : EEERRE

vesceieTion: N

CALLS:

PR
o« v

L)
P

TRIGGEF SCH TIME UNITS FRIOFITY TRIGLEF SCH TIME UNITS FRICFITY

KR

R

Figure 3-1. Form for the Scenario Entity

Following 1s a description of the fields in the Scenario form:

SCENARIO: Name of the Scenario (1 to 8 characters)

PERIOD LENGTH: Amount of time in each simulated period.

UNITS: The time units in which the PERIOD LENGTH is expressed.

OUTPUT UNIT3: These are the time units in which the simulation will be }
run, (i.e. all time unit specifications throughout the
model will be converted to this unit} and in which all
simulation output will appear unless changed by the user
during the simulation run (sce section 7.15).

3-2

P} OV IC 0. a0 2t n . 'ala 80 a; ing_val oaf Spha gty abeghy gVa 00 000 AV 22’ 89 4V D Yo beete ic SVebta tar’ oy “aapt — na—

DESCRIPTION: Any user comment (0 to 53 characters)

PERIODS: Any characters may be entered in these fields. The
number of fields containing characters determines the
number of periods in a simulation, i.e., for each of the
14 fields in which an entry is made a period is added .o
the total simulation run. A Scenario can have a maximum

- of 14 periods.

TRIGGER: The name of a Process or Load that is to be initiated at
the scheduled time.

SCH TIME: The simulation time, from the start of the simulation, at
which the the Load or Process specified is to be
initiated.

UNITS: The time units in which SCH TIME is expressecd.

The valid entries for UNITS, OUTPUT UNITS and schedule
UNITS are as follows:

Form Entry Meaning
nseconds (ns) - nanoseconds
useconds (us) - microseconds
mseconds (ms) - milliseconds
seconds (s) - seconds
minutes (m) - minutes
hours (h) - hours

days (d) - days

The default value which is automatically placed in the
form is SECONDS, but the user can change this default by
using the Design User Interface UNITS command (see
section 6.1.9).

PRIORITY: The priority the triggered Process is to have. Priority
is inverse, priority 1 preempts priority 2. If a Load
name is entered in the trigger field, the corresponding
priority field is ignored.

Operation - A model database may contain more than one Scenario. However,
only one Scenario can be used per simulation run. The Scenario specified will
define the simulation period length, and Loads and Processes to be triggered

by the Scenario. The total simulation time is the product of the number of
periods and the period length. The number of periods also effects the
col lection of plot data points. (see appendix A.3)

Constants may be used to define PERIOD LENGTH, SCH TIME, and PRIORITY in order
to parameterize a model.

Scenario entities are entered into a model by using the Design User Interface
EDIT command (see section 6.1.4).

- -~ Ag ~an - m R g R W e " ~ - -
-.l‘. 19,090 %0, AL DR U U e a0 ..‘0.- V0. %0, (A .v s P . '.v 'f‘ff ,,' ,o"v .l..o ‘l s % "-'r g!..

e ot Ba® ¥ A v by

£d

FL LS

X y #_ 2 -
Pl
g‘<f33555'

o

I g

)
00

ok 70y | REL A A
e ';'?"'

V@

“, .'\ AJ
L ’; ‘.. .:
At)

y
«
L T

l-.
- N l'

g B
NN

XY ‘l.:l & y
’, i .:\. .'.": <

h] r’.'
A
\"-‘‘\;"

PG AL EN@ A
-": 1_3"‘. \")5"}"1' :.',,\
' 5y .

.

[

.

Yy @ L P
A . 1‘.‘"
SN DN

-qf
Y 4

P s .;’;.

s

‘l,

2 9
II“

bl Al £

£, 878 0rs Ry WU oL D "aVe n e R R Ak Sat Vol 920 08 Gt Sott Sd Wi 0ue G 0"t a*

3.2 LOAD

The Load entity is used with the Scenario entity to periodically trigger

Processes during the simulation, and optionally at specific nodes in the

architecture. The Load describes which Processes will be initiated and at

which nodes. An instance of the Load is triggered simultaneously at each of .
the specified nodes. This entity can be described in the following way: for

each Process in the Load, initiate up to the maximum number at an interval

determined by the schedule method, and initiate them simultaneously at each of

the specified nodes. The form for the LOAD entity is shown in figure 3-2.

Nl
s r

-w

Lovo: S

HOCEL HODES HODES NODES

HODES HOOER HOUET HOLES

DESCPIPTION:

SCHATD MEAH DELTA

SECONDS

Figure 3-2. Fom for the Load Entity

)

Y

\""\\.

Following is a description of the fields in the Load form. :jx
Y

w

LOAD: Name of the Load (1 to 8 characters) :j
-

NODES: If an architecture is used these are the nodes in whicnh the !.

1

Processes specified will take place. Otherwise leave blank.

T T s ey B R F R T NS TR ATV T W T R BB T T W W

DESCR: Any user comment (0 to 53 characters) o

PROCESS: Names of Processes which the Load triggers according to s

schedule. . k.

e

] PNS

p MAX §: Maximum number of times this Process is to be triggered in -

: each execution of the Load. o

: . o

; SCHMTD: Statistical function to be used to determine the time between : S,
‘ Process triggerings. It can be any of those described under)

: SCHEDULE METHODS (see below). o

| ::

] .‘-’v

' 3-4 o

l W

| "1:
)

] q:-

Ny

e TP S

Catate L t At

S AR a8 oBD O MR LRR BE O B i e e L0 AR At SR S e ol Sat it Rt et Bt Ba Y Ayt St Set et e e Bet 6yt 0eC But Gt ¥ ¥ gt BV hab Rab byt U hod Bed B0 (8 R i i

DELTA:

UNITS:

PRIORITY:

Depending upon schedule method, MEAN is used to determine the
interval between each triggering of a Process. In general
this is the mean inter-arrival time.

Depending upon schedule method, DELTA is used to determine the
deviation about the mean for the interval between triggerin,s
of a Process.

The time units in which the schedule is expressed. The valid
entries are as follows:

Form Entry Meaning
nseconds (ns) nanoseconds
useconds (us) microseconds
mseconds (ms) milliseconds
seconds (s) seconds
minutes {(m) minutes
hours (h) hours

days (d) days

The default value which is automatically placed in the form is
SECONDS, but the user can change this default by using the
Design User Interface UNITS command (see section 6.1.9).

Priority with which the Process is to be executed. Priority
is inverse, priority 1 preempts priority 2. Priority is used
to determine which Process will be allowed to allocate a
Resaurce when it is contended for by two or more Processes
{see ALLOC Primitive, section 3.9.2).

SCHEDULE METHODS:

START -

INTERVAL -

POIS3ON -

MEAN ¢
DELTA:

inapplicable; i.e., leave field blank
inapplicable; i.e., leave field blank

All Processes up to the maximum number are initiated at the
same clock time, the start of the Load. This can be used to
simulate pre-loading.

MEAN: time between initiations
DELTA: 1inapplicable; i.e., leave field blank

One Process is initiated at every interval as defined by MEAN.

The first starts at the time given by MEAN with respect to the
starting time of the Load.

MAX #: mean number in a PERLIOD
MEAN: lnapplicable: i.c., leave field blank
DELTA: inapplicable; 1.e., leave field blank

Processes .are scheduled randomly by a Poisson process. The
time betwesn Process triggerings is exponentially
distributed. The MAX # parameter defines the mean number for
a PERIOD. PLRIOD length is defined in the Scenario.

3-5

R

~
‘

AR

S

LALL,

- }.-7
x

-"-"l'/.,n

>

: 0 . .. ol Ak sl BYa
e NV fa 2 0% 2R “¥ Uy P Pacdiastunsdy AV Y R > >

X))
{, " »
D) :_:)
. %
EXPONENT - MEAN: mean time between Process triggerings o
DELTA: inapplicable; i.e., leave field blank ?l
¥ The time passing between Process triggerings is exponentially -
' distributed. ok
|)
[‘-\.
LOGNORML - MEAN: mean time between Process triggerings hy
DELTA: standard deviation of time between Process triggerings : -
]
? The time passing between Process triggerings is lognormally
X distributed.
p NORMAL - MEAN: mean time between Process triggerings
DELTA: standard deviation of time between Process triggerings
The time passing between Process triggerings is normally
distributed.
UNIFORM - MEAN: mean time between Process triggerings X
DELTA: range about the MEAN :
’
The time passing between Process triggerings is uniformly :;
distributed. The DELTA parameter specifies the difference e
between the largest possible time between Process triggerings :L
! and the MEAN time. e
» \{
" ERLANG - MEAN: mean time between Process triggerings L
DELTA: order of the distribution function {jl
o
AR
; The time passing between Process triggerings is Erlang o
! distributed. The order "k" is given by the DELTA. ;¢;
q_'-a
WEIBULL - MEAN: scale parameter. .
DELTA: shapc parameter :E
A
The time passing between Process triggerings is Weibull ;S
distributed.]
4
e
& GAMMA - MEAN: mean time between Process triggecings o
X DELTA: k S
.-::
The time passing between Process triggerings is gamma o
distributed. -
Operation - a load specifies a cluster of Processes to be triggered according . i_
to a scheduling method and a priority. R
Relationships - Loads are part of Scenarios and specify Processes to be e
3 triggéred and nodes in which they are to be triggered. o
[. '.J':’

Load entities are entered into a model by using the Design User Intertace EDIT
command (sec¢ scction 6.1.4).

3-6

T U e
G NN 20 G S A A AT NI N I AT 0 NN W R RN,

ITEM
3.3 ITEM

The Item entity is used to model transient data elements that "flow" through a
system. These data items, which, by the nature of their varying attribute
values, permit data dependent decision making and timing.

Items can be originated, terminated aid passed through the system fram one
Process to another via the Primitives CREATE, DESTROY, CALL and SEND. Items
can also be placed on and removed fram Queues via the Primitives FILE and
REMOVE, and pointed to via the Primitive FIND. The form for the Item entity
is shown in figure 3-3.

17EM rene :
cescrIPTIon: I

RTTRIBUTES

MAME JGLUE NAME VALUE

Figure 3-3. Form for the Item Entity

Following is a description of the fields in the Item form.
ITEM NAME: Name of the Item (1 to 8 character)
DESCRIPTION: Any user comment (0 to 53 characters)

NAME: Name of an attribute of the Item. An Item
can have up to 15 user-defined attributes.

VALUE: The initial value to be assigned to the corresponding
attribute (integer, decimal, or character); if character,
it must be a defined Process, Resource, global Variable,
Constant, Item, Queue, Table or Action or a keyword or
alpha literal.

NOTE: All Items have two Liplicitly defined attributes, TAIL and PRIORITY.
TAIL is the number of the [tem created, and PRIORITY is the priority of the
Process that creates the [tem. The TALL attribute can be used for Item
matching (see SEND Primitive).

S N T s T A A S A o

L NS

- e e e
NN

[

v '_'-
PN M

LR IR

>
»

» % _'-':.’\- '.5 ’\ ‘.".' -

P

-A.(. . . -
A

g,
A

R S

s

e
s

e T
S'l .I‘

v e
’
“

ARy

P L A B I M M M N L T T W P T e W T S T S W I

Operation - An Item is created for each occurrence of the following:

’ a. a CREATE Primitive that is executed - used to model transient data
elements

b. a SEND Primitive that is executed in a Process which does not have an
Item of the specific name attached at the time.

An Item is terminated only when the DESTROY Primitive is executed.
¥ Attribute values are assigned at the time of creation.

Relationship- Item attributes are used by Process Primitives and attribute
values can be modified by the ASSIGN and READ Primitives.

| Item entities are entered into a model by using the Design User Interface EDIT
[command {see section 6.1.4).

P R A o o P W eV o P o A W B g L W W W s -, - | .y . T T Nt T w® A" « Y et A e
o, LN - LY f L . AN 2 - . Wm’:.\lfm:hy..l‘\.l’-lxﬂ?l’m.&l}.l.\.ﬁh\.ﬁ.l‘_h\l‘_\\.A.‘_‘:‘J\J.‘_.n

rn b AR LA R R R LA Lk el kR e bt 1o e 00, NG S0 05 O My gV Rty 01 pAe pia bie P8l DA SR Rt o b 0l oVl ed Bt ad At 5ot b sur RS RS Ld LTS "ﬂ'

USER DEFINED QUEUES

3.4 USER DEFINED QUEUES

A Queue is a global entity used to represent an ordered holding area for Items.

When a Queue is defined, a maximum size parameter is specified (the default is
"infinite"). This allows Queues to model finite storage devices that have a
limited capacity (e.g., a storage bin, a camputer job scheduler). Once the
value is defined, it may not be changed and thus this parameter must be either
a numeric value or a defined Constant.

Queues are manipulated by Processes through the use of the FILE, FIND, and
REMOVE Primitives. An Item may be placed on a Queue, if space exists, by
using the FILE Primitive, specifying one of four location parameters: FIRST,
LAST, BEFORE and NEXT. The former two parameters denote the end points of a
Queue, the first and last slots. The latter two are location parameters
relative to a Queue pointer (see below). If no space exists on the Queue, the
Process which is executing the FILE Primitive is suspended. This condition is
known as Queue blocked. In this state the Process waits until space becomes
available on the Queuec. Waiting for space on a Queue is by a first come first
served discipline.

An Item may be taken off the Queue by using the REMOVE Primitive and
specifying a location parameter (i.e., FIRST, LAST, or NEXT, where NEXT means
the current Item pointed to by the Queue pointer). After an Item is removed
fram a Queue, it may be sent, destroyed, or otherwise modified.

An Item may not be modified, sent, or destroyed while it is on a Queue. The
same Item instance may not exist on more than one Queue. Multiple Processes
may access the same Queue.

A Queue pointer is maintained for each Process which references a Queue. This
pointer contains the address of the entity that the Process is addressing in a
Queue. The contents of the Queue pointer is detemined by rules described
below and in the sections on the Primitives FILE (section 3.9.13), FIND
(section 3.9.14) and REMOVE (section 3.9.19):

1. The pointer contains the address of the last entity found with a FIND
Primitive; otherwise,

2. The pointer contains the address of the last entity filed with a FILE
Primitive; otherwise,

3. The pointer contains the address of the successor of the last entity
removed with a REMOVE Primitive with a NEXT option.

The REMOVE and FIND Primitives access a Queue and set the value of the local
variable referenced in the Primitive. This means that when a FIND or REMOVE
Primitive i3 executed, the value of the local variable could be sct to 0. This
occurs under the following circumstances:

3-9

Fd

‘g’aa s 0,8 T 1
&}‘.‘,‘-}5 v

Lo

A.<ﬁ,,-.
L L

) -
1Ty

I

1. 'j_

P
N
U

FuM L

v -

» . L L N P
_A\-JI. 'Cn.. M\.A_I_A_’L'&.-L, IL‘A A\;"\‘\'-.'.".'F.f.-'.‘.

- h flal Wt N v e) e omaoan - i et . p
. L AT e Al 4 P v LR Sl Wl S a0l B AP RE N Rl e e B et

1. A REMOVE Primitive attempts to remove an entity fram an empty Queue.
2. A FIND Primitive accesses an empty Queue.
3. The NEXT or BEFORE Item in a Queue does not exist.

The form for the Queue entity is shown in figure 3-4.

queve: IR 5'ec: EUHE
DESCR

Figure 3-4. Form for the Queue Entity

Following is a description of the fields in the Queue form.
QUEUE: Name of the Queue (1 to 8 character)

SIZE: An integer value of 1 to 8 digits, a defined Constant entity, or
the word INFINITE (which is the default)

DESCR: Any user comment (0 to 53 characters)

Relationships = Queues are used to hold Items. Queues are manipulated by the
FILE, FIND, and REMOVE Primitives.

Queue entities are entered into a model by using the Design User Interface
EDIT command (see section 6.1.4). Attributes associated with Queue entities
are described in section 3.13.

See section 3.5 for a description of system defined queues.

3-10

w".’-"-

e
ya

....

BRI EE S

S et S !
s

»
|

K

.

, ,,,~,-
PR o

”

R AR S R
oo a e e

'J.'.’./'.f-'t

HET A RA S L

.-’U 'i ‘l »
N

4 e ey
.l-l

KA S

4y “w %
A

o B e T
o] b AD "

SRR

.

T W ORIy SV LN VLY T I R R R R L L LTS)
T S o AT T, S, HE AN G LA S N N SR (N B 0 G e

SYSTEM DEFINED QUEUES

3.5 SYSTEM DEFINED QUEUES

System defined queues are managed by the simulator during a simulation run.
Queues are used to manage resources and the names of AISIM entities.

3.5.1 States Associated with Resources

Associated with each Resource entity are five simulation states upon which
statistics are kept. Four of these states apply to Resource units and one of
the states applies to Processes. Resource units can be in one of the four
states idle, busy, hold, and inactive. If a Process is waiting for a Resource
unit which is unavailable, the Process is in the wait state. Resource units
which are idle or inactive are accounted for by counters associated with the
Resource. Busy Resource units are kept on a system—defined queue called the
busy queue. Resource units that are part of a multiple-unit request are held
in a system~defined hold queue until all requested units are available.
Processes which are waiting for Resource units are kept on a wait queue.
Resaurces and Processes are placed in these states during the simulation as
fol lows:

Resource units are idle while they are unallocated and available to
Processes. Rescurce units are in the idle state: (1) at the
initialization of the simulation, (2) when removed from the inactive
state (by the RESET Primitive) or (3) when removed fram the busy quecue
{by the DEALLOC Primitive).

Resource units are placed on the busy queue while they are allocated by

some Process through the ALLOC Primitive. They may be removed from the

busy queue (1) by being deallocated with the DEALLOC Primitive or (2) by
being set inactive by the RESET Primitive.

Resource units are in the inactive state when they are not available to
be allocated by Processes. Resources may be placed in this state (1) at
the initialization of the simulation, (2) fram the idle state by means of
the RESET Primitive, and (3) fram the busy state by means of the RESET
Primitive.

When same of the Resource Units of a multiple-unit request are available
before the complete request can be filled, the available units are placed
in a hold queuc until the remaining units became available. When all of
the Resource units requested become available, they are placed on the
busy queue as described above.

The wait queue holds Processes that are suspended for lack of an
availaple unit of the needed Resource. A Process is placed on this queue
when either (1) it attempts to allocate the Resource (with the ALLOC
Primitive) that is held by another Process of equal or "higher" priority
or (2) it loses a Resource to a "higher" priority Process.

The relation between these states is illustrated in figqure 3-5.

3-11

AL A

N
o

XOO S A

-
‘:'

L™ A,

&

T
W

PAP AP U S B
NSy

~ .-
IR 7.
LT RN

4
'-‘

e ae
o

e s g w _a_s
-
L 'IJ:..

1

z

WYl s

L

RELUE VLIV RS §5 0l St Sa® A" Ja” Ky Jha’ g v

During a simulation run statistics are kept on the activity of these states.
These results are presented in the simulation's Resource report. The user can
access the number of Resource units or Processes currently in the idle, busy,
inactive, or wait states using attributes described in section 3.13.

/ ALLOC
| mE
RESET (v /3 DEALLOC ALLOC

sy ’

/7 RESET (-))
~, //// \ » Y
\t SET () + CEALLDS T
TNACTIVE FEXET ¢ : ‘ | Busy) o
FESET (-) + UNLOX v P
A,
I

-

Figure 3-5. Resource States

3.5.2 Cross Reference Sets

I adie -
AN

In addition to the queues associated with Resource contention, there are eight
system defined queues called "cross-reference sets". These queues correspord
to the sets of names of the following AISIM entities:

R
l
W o

v o
Yy

1. Resource names

s
2. Queue names [y

o
3. Process names .

o

4., Item names

5. Action names

T e TN

RN

6. Table names

"
]
’

7. Constant names

2

8. Variable names

o

What this means is that an AISIM modeler can write Processes which perform -
. . . . o,

some function on each entity defined in one of the above sets. o :,
L !

£

The FIND Primitive accesses the sct of names of an entity type by specitying
the name, e.g., Resource, Item, Process, as the Queue ficld referonce in the
Primitive.

3-12

f??????ﬁﬂ'

|-

Y S

‘
.
T AT AT Tt N T e e e .'."i
fatataar a el e tadaTalada s T ya

W W I WUV W ot W W N R = R U R O O R Y Y L Y T L L A UV LV N UV OV OV TV U O TR T T TN

RESOURCE

3.6 RESOURCE

The Resource entity is used to model the mechanisms required to perform a
Process. "Mechanisms” 1n this context can be computer processors, memory,
communications channels, support personnel, documents, etc.

Queueing for a Resource nccurs only within a Process and, in particular, only
where an ALLOC Primitive is used. In other words, if no ALLOC Primitive is
used there will be no queucing. If no Resource is used (allocated) within a
Process, the Process can be executed in parallel (simultaneously) by any
number of concurrent requests and the model will represent only time delays
associated with the ACTION Primitive.

When a Resource is used (allocated) by a Process, there can be only as many
concurrent executions of the Process as there are Resource units available.
For example, if the capacity of a Resource is one, then any Processes which
allocate that Resource will be executed serially (one at a time). Exccution
concurrency is controlled only between the allocation and deallocation of the
Resaurce (i.e., if the ALLOC Primitive is the second Primitive in a Process,
the first Primitive can be executed concurrently by any number of requests
whereas the ALLOC Primitive can be executed concurrently by only as many
requests as the Resource has units available).

If no Resource units are available (i.e., idle or presently allocated to a
lower priority Process) when an ALLOC Primitive is attempted, the Process'
allocation request is merged onto a wait queue associated with the Resource.
How the request is merged depends on the priority of the request. The request
is merged and sorted by inverse priority (priority 1 preempts priority 2).
Within priority the sorting is done first-in-first-out. Whhen deallocation of
the Resource (by same other Process) has resulted in enough units to satisty
the requests, and the request has moved to the top of the wait quecue, then the
request is removed trom the queue, the allocation is performed, and the
Process is executed. Note that a deallocation of several units may result in
several requests being removed fram the queue simultaneously. For allocation
reqguests of multiple units, the user can specify whether the units are to be
allocated as they become available or only when all units are availabice at the
same time.

If, when the ALLOC Primitive is attempted, there is a lower priority Process
Dossessing the desirad Resource units, then the higher priority Process will
"steal" those units. The lower priority Process will be suspended while ot
walts for Resource units. It will be placed on the wart queue but its
senlority 1s bhased upon the time of 1ts first allocation attempt, not the time

. it lost its Resources. If at the time of 31 multiple-unitl reguest ome ot the
units are available, and the request is tor units to Yxe allacated as they
become available, the currently avarlable units are placed in g hodd queue
until the request is rilled. As units become available, they are eided Lo the

4 hold queue until all ot the requestoed uni~s dre avallaole. Then the unius are

mwved to the busy (ucuc.

3-13

i ® s %A ms e a Ay e tE At " TRk f ety e an
LR NN TR NI T O 2% N g AR R N SN R AR A AR N

AL AR

i
L

»

P 4 el

o
*

o4

T g

»\"

tondibankbaiiohin et e B BhC MM ML L Rl S S R Sl S S A IS A P L 0 0 Red s Gl St bg S LT E RATRR TA hs g taa ol St A YA SALRL B R Sl Sl Sak el Sl it

e
v
\J'

s wrg-
LY (.‘S:‘

Y

Y

The Resource entity provides the most interesting and useful simulation
results; e.g., delays, bottlenecks, utilization percentages, and traffic
statistics. Therefore, the use of Resources should be carefully designed from
both the standpoint of model credibility and the specification of required
simulation output.

Voo ey MR

The form for the Resource entity is shown in figure 3-6. .

PESOUFCE NAME : —
toTaL Humeer oF UnITS: (R
IniTIaL NumeeR oF uniTs: R
cesceeTion: S
RTTRIBUTES

HAME VUALLE MAME HALUE

Figure 3-6. Fomm for the Resource Entity

Lanam an an e x g Bo o o

-t
o A

Following is a description of the fields in the Resource form:

Y

L.

RESOURCE NAME: 1 t> 8 character name of Resource

“.‘} t] .
Yoy

TOTAL NUMBER: Maximum number of units of the Resource that can be
allocated (integer or named Constant).

K

[NTTIAL NUMBER: Number of units availlable for allocation it the start of
the simulation (integer or named Constant).

DESCRIPTION: Any user comment (0 to 53 characters) ’

] L
NAME : 1 to 8 character name ot user defined attribute :f:
VALUE: Initial value to be assined Lo an atiribute; can be -

single precision real or integer number, or the name of
a detinel Variable, Constuant, Process, ltem, Resource,
Queue, Action, Table, or 4 keyword or alpha literal.

LT,

w oL, yw

Py

3-14

L 3
.A....-'q.

E
g
g
'

R

(Y

AR I R I e T S N A L L T A Wl O R T WA Y R B A e R SN TN AT
N SN PE I N NN NEM PP M SN N I AN T IENT AT AT AT AT AT O\ T aTan i VL WAt R R St R G G RN RN LT

[
[0

R T R N W N W W N Y W N ™ T T B o N I W W W oW O o W N O Ll R R K N, CN TN RPN NN N Y OVIVUN,

>ration - Resources are initialized at beginning of simulation to the values o>

glven above. ¢

3)
Relationships - Resources are used by Processes with the ALLOC, DEALLOC, Q:
RESET, LOCK, UNLOCK and TEST Primitives. N

»

.
Resource entities are entered into the model by using the Design User :*

. Interface EDIT command (see section 6.1.4). L
b
o
.."y.
.'\
."N

et

o

)

AL
(-':'\.'

W

<

SRR e P
XXX I

55 %5

Y

[ad
Py

Y % N

PR

-.
7
RSN
p 4

e 8

NP,

3-15

~
.

s LSS
'y A

Y e e Ly A R B Ny VDN N S T D Tt s Oy

P

L A P i A 4

TWUWL VG

S L e D N L R R A R L i C i e A VT DO R e

ACTION

3.7 ACTION

The Action entity represents time consumption for any activity, decision,
etc., that consumes time. This entity functions in conjunction with the
ACTION Primitive. For each defined Action entity, statistics on the time
consumed by the associated ACTION Primitive are collected for the simulation's
Action report. For this reason, each Action named in an ACTION Primitive is
given a separate definition outside the Process in which it appears. These
Action entities are automatically created by AISIM whenever a user adds an
Action Primitive to a model.

In the form for this definition, the Action field contains a name identical
with one that appears in an ACTION Primitive in a Process. DESCRIPTION is
used to describe the Action. When AISIM automatically creates an Action
entity, the description is copied from the COMMENT field of the Action
Primitive (see section 3.9.1), but the user can change the description by
using the Design User Interface EDIT command (see section 6.1.4), The form
for the Action entity is shown in figure 3-7.

COSULTE |
vescrirTion: |

Figure 3-7. Form for the Action Entity

Following is a description of the fields in the Action form:
ACTION: 1 to 8 character name of action
DESCRIPTION: Any user comment (0 to 53 characters)

Relationships - Actions are referenced by the ACTION Primitive.

Note: Although AISIM automatically creates and deletes all Action entities as
a user places and deletes ACTION Primitives, the uscr is allowed to create and
delete Action entities. For example, a user would need to create an Action
entity 1n the case where the name of an ACTION is passed to a Process and the
name used 1n the ACTION Primitive in that Process is only a local variable
which will take on the name of the ACTION passed into it.

\« & & of
)

')?-'f"f';f‘)

’
- -
.

.l‘ -

4
L 4
-

i

- ." - 1' ‘,.~',- 1" o
N X

o,

4, oy
.,'.IS{VI" 'vlfl W

)

L

a
-

L4

.
Wl

R
- .y
-

SRR

- e >
. -

D77

LS e e o o

[D gu an o 4

P o W L o W W W W W W WU W W e 2 I W T R R T T T o T R T o T F P o P o I L%

PROCESS

3.8 PROCESS

The Process entity is used to represent the sequential logic and activities,
operations, functions, ctc., of the modeled system. Processes are composed of
Primitives, each of which represents a step in the function being modeled by
the Process. It is at the Primitive level that Resources are allocated and
deallocated, time is consumed, decisions take place, etc.

In the graphic representation of a Process, the Primitives are flanked at the
top and bottom by figures labeled START and END. These figures represent the
logical entry and exit points for the Process.

Processes are initiated by (1) Scenarios and Loads (within Scenarios) and (2)
by other Processes through the CALL and SEND Primitives. Once initiated, the
execution of the Process depends upon the availability of the Resources that
the Process references through the ALLOC and DEALLOC Primitives.

There are three types of Processes: parameter passing, Item passing, and
standard. Each differs in how it is triggered.

A parameter passing Process is one that takes values of local variables from
another Process as inputs and/or returns the values of local variables to the
other Process as outputs. Such Processes can be triggered only by a CALL
Primitive and it is the calling Process which sets up the relation for the
values given and returned (see CALL Primitive, section 3.9.5). The given and
return values can be numerics, string literals, keywords, the names of Items,
Queues, Resources, Processes, Tables and Actions.

An Item passing Process is one that is triggered by having Item(s) delivered
to it from other Process(es) through the SEND Primitive. The required Items
need not be delivered from a single Process; the sending Processes may be as
many as six, but the Process will not execute until all of the Items indicated
in the definition are Jdelivered.

A standard Process 1s one which neither requires Items nor is given (or
returns) parameters. It may be trijjeraed by either a CALL Primitive from
another Process or through the Scenario or Loads.

When a Process 15 lefined, the nxde in which the Process is to execute is
specitied. [t the Process can exccute in any node, or it there is no
aromitecture, ALL can e specifiad. Senerally, when a Process is triggered,
LLoexecutes 1nothe same aoxde 25 1ts parent, or when a Process is triggered
Prom g Load, the Load naxdes specify where the Process is to axecute. However,
LE g Process s Lriggercd from a Scenario, the node specified for the Process
Ls tne one in Wi the Process sxecutes. The nade specitied in tiwe Process
definizion s oalso v nable to the asor through the SNODE keyword (see

s2ction 30177,

3-17

nOs

Y

APES LSS T

o

o b A AR

P

AR VEAS T
‘r‘:‘g‘"{ﬂ-“-' o o

<SS

A

LA A A
l‘-{'n‘l" -..

/
/3

TS A
s (" A (:":'nl§|

P
I’l"l'.

pd

M o
b

T

h &0

4 [

-
)

7,

P A v I 2R 2o 4o YuPe Aad
SN L R A

W T W L U R O S T Ty Y T T P N T R R Y o T o T A W Y N W o W vV

The initial form for the Process entity is shown in figure 3-8.

TTHRT
eeocess e [EEEER o R
ATTRIEUTES ATTACHED (ES OF NHOI _

PFOCESS UESCRIFTION

sterT eLock TvrE [
ENTEP "FHPM" FOR PHPAMETER PASSING

ENTER “ITEM" FOR ITEM PASSING
ENTER "STD " FOR STANDAPD PROCESS

Figure 3-8. Initial Form for the Process Entity

Following is a description of the fields in the initial Process entity form:
PROCESS NAME: 1 to 8 character name of Process

NODE: architecture node in which this Process is to
execute (if its execution is restricted to a
specific node; ALL in this field indicates the
Process may execute in any node)

ATTRIBUTES ALTACHED: YES or NO to indicate whether the Process has
attributes.

PROCESS DESCRIPTION: 0O to 53 alphanumeric character description.

START BLOCK TYPE: (STD, ITEM, PARM)

To define an Item passing Process the user enters "Item" in the START BLOCK
TYPE field. The user will then be presented with the form shown in figure 3-9.
ITEM FRIZING STHRET

ITEMS RECEIVED:

MUST wlL THE ITEM SERIAL MUMEERS MeTCH (M -

TLELTITTT/ UYL R Ty v TR

Figure 3-9. Form for an Item Passing Process

3-18

[__2e o & gn s gn b GA N NRen PY

BN S Ny

-y

LR A

5 NG,

3
. e

“J.? T, L

1]
»

'rJ-.‘i

e

s ‘.\';", ".

“u

o 1

"
.
&

I TP
G

R A
2 o

.-.\'
.
.

I
P]
.

S
7 «

) ‘\.

5}’ l{’:’,’,T,J{I’IJ“ ;

'I"lv
«

A

G o -

¥
O N N S e g e iy Ay Y Tt St O S By i S Sy N AT L AT AT L S s A

This form is for providing a list of the needed Items. The Items received by
each must be of distinct types.

The field concerning the matching of serial numbers asks whether the TAIL
numbers (which is a default attribute of every Item) must be the same for all
the Items in the Process. If the user enters "Yes" in this field, the Proc.ss
will not execute until it. has received Items of the specified type to which
the same TAIL number attribute has been assigned.

To define a parameter passing Process the user enters "PARM" in the START
BLOCK TYPE field. The user will then be presented with the form shown in
figure 3-10.

EufF i ETERT FUR FRESING STWFT

GQUVEN:

SET Qran

Figure 3-10. Form for Parameter Passing Process

This form is for providing the names of the local variables to be given and
returned to any Process that calls it through the CALL Primitive. The CALL
Primitive must contain the same number of entries in its given and return
lists as the called Process. If the CALL Primitive does not give or return
all the necessary values, an execution error will occur indicating a
disagreement in the number of values.

To define a standard Process the user enters "STD" in the START BLOCK TYPE
field. Since no inputs are relevant to its execution, there is no seccondary
tom for the definition of a standard Process.

Figure 3-11 is a typical flowchart representation of a Process. This
graphical representation of the logic of a Process is presented to the user
during the design of an AISIM model.

Relationships - Processes are constructed from Primitives. Resources are used
by the Process through the ALLOC, LEALLOC, RESET, LOCK, UNLOCK, and TEST
Primitives. Time is consumed by the ACIION Primitive. Processes are
initiated by Loads, Scenarios and by other Processes through the CALL and SEND
Primitives.

Process entities are entered into a model by using the Design User Interface
EDIT command (see section H.1.45.

3-19

e T A T e T A N T e e T .

COEAIAES

)
4
L

’J

o)
Pd

.,-.,...- v
N '. v

Ta, ty M N
. [
s

[
P AL

T I H TA W TICCWCWOW

SSEMSMITTING MEZSRGES T PECEDVER }_
iy .
Y -
START 1\ cratiom o
! TRSHIMIT ; O ,::
- ¥
5 . "‘
/ ALLOC BUFL '
2] — 1 LHITS ,
HULAOCATE SUFL \'\F‘QF‘TIM_ EFRICFTV/
MG ' .
i e \W,F'E»'«TE_ N
ah / ' INTROCLZE MSG 1NTO SVSTEM ‘ i
v
FANCam e
EUAL <
4 ALPHA -
‘GENEFATE FANDOM HUMEER . -
1
EUAL T} ALPHA ¢ GAMMAL i
& ALPHA _
LPH ‘aLPHA TIMES AUERAGE . -
\l/ :.r
CLFRA "_
| 1S ASSIGED TO :..
& Ms0 LENGTH | GET MESZAGE LEINGTH .
N)
EU aL BLPHE & GRMMeZ :
b MU R -.’:
“CALCULATE TRWHSMIT TIME ¢ N
A/ -:..
' SEMDIMG UNITZ ¢ SECOM S
. CONBTANT OFTIOM : FESUME .
g TIME COMSUMED TEANSHMITTING .
\. E“_l I 1l L “ s ~
i -,”,' . -;
| ! / FiL T -
K ime; LasT .
a ! / -
W 0N BUFFEP 7 STORE Min O Z FFEF
| ‘-
. T)
. N ',’ LEWMLLTC BLF "
_ | SE—T] !
Lt U . . T pieer
SI_EWIE FZILLRIE BUFL |1 Ut ;
. W
: / y
. (END } .
: ' /

»
Figure 3-11. Samplec Process Diajgram
3-20
. [4
~

PO AN A N N N A s AN, L PO AN AN N s T AU I A A iy
SRR MAEANE GO0 £ S ALLHARAL LRI RC TR Lok

B LA AR UR e Rre hia B0e % g0 40, 16,0 Sal Sal Sh Al B EA G N ot st N A AR AL ALALA NS AR Sl Al Sl A Pat Nt e bty Sy) to §on S0 S Rl

PRIMITIVES

3.9 PRIMITIVES

Primitives are the constituent elements of Processes and are used to
characterize procedural steps by sequential logic. AISIM offers a list of .8
Primitives. Although limited in number, the Primitives have been shown to

» represent all logical operations for computer system modeling. The Primitives
can be grouped into eleven functional categories. These categories are as
fol lows:

Process Execution Control

b CALL
SEND
SUSPEND
RESUME
WAIT

These Primitives control the initiation and sequencing of Processes.

Branch Control byt
. "l
COMPARE o
BRANCH o
ENTRY .t
PROB)
me F\
' ‘.:
These Primitives govern the internal branching in the logic of a Process. ;:
| N
Item Handling Ry
CREATE !
DESTROY :
o | o , =
These two Primitives govern the introduction and elimination of a system's ros
transient data elements. o
LY

Time Consumption

ACTION

This Primitive represents the consumption of time through some activity,
decision, etc.

Mathematical Operations

w--_,_vvvv‘,_.._““.VTTf___Tv‘r-f
2

EVAL

This Primitive governs calculations, invoking standard mathematical functions
l and operations or making use of user-defined Tables.

3-21

TN P T T N R I Y P N P N L LRI A T e O A G RN L
AL N NI IOyt o she i i iy ey LA S N LF A PR A PR AT SR TORY AT

KXY

? TR - ; “aab el P B Y vy - :
o Fat 410 gaft hab la® ¢ Sa? Bet G0 a0 gy] - W A A WU NN O N a W Vo AV avav) -

Resource Allocation

ALLOC
DEALLOC
RESET
TEST
LOCK
UNLOCK

These Primitives govern the use of Resources.

Queuc Manipulation

FILE
FIND
REMOVE
These Primitives govern storage and retrieval on Queues.

Variable Assignment

ASSIGN

This Primitive governs the assignment of values to Variables or Attributes
(both numerical and non-numerical).

Debugging
TRACE

This Primitive has the special function of creating a record of the sequence
of Process Primitive executions which takes place during simulation. It is
used for debugging and validating a model.

Input/Output

READ
WRITE
These Primitives enable a user to read data from and write data to external

files during a simulation run. This data can be used to control the execution
ot the simulation and to provide data for debugging and validating a model.

9?scrigtion
COMMENT

This Primitive has no functionqlit¥ during a simulation run, and 1s used
simply to comment the surrounding logic in a Process.

Figure 3-12 shows the graphic representation of each Primitive, and following

15 a description of the meaning of cach Primitive and the paramecters necessary

to define each. Primitives are enterced using the Process Bditor Interface of
the Design User Interface (see scction 6.2).

=22

x '\‘;l{'a .

.

’

o

gl L 20]

P,
=)

f 'I.l‘.:‘
SASSSN T v,

e o~ -y « -
(s o«

EAAAA

7

S L
‘, i

P iy o
5y F

NS

.-

LA

Do

l"

Y
l'l

EIA "

A

A e

- W . e WL W W -I'J\i‘\li'..‘H‘."f.'V'."".—-f:f.—-F.ch.H.ﬁiugtgd‘¢’iigz.'1';lln;'L'I'L.I.l.;[" TR TV TR
) Sl A - ' - s m T TR v P

-

o

o

_‘f
c.‘{
]
;\m
3
e
]
I~J
* UNITS : SECOMDS 'l .':J
- - | ! GF T 1r: RESIME R [N
ACTICN li] LOCK = Lo ;p_
-— i
: | o
I VAN ; o
— tITs e I Y
ALLOC ‘ \foerial SRS {OF T Lh—\{jﬁss : Lo :
1 \' ; t ‘
< 1
g .7 |
ASSIGN O—» | PRCS
S 3
[Q— . :-:.
BRANCH l FILE: ; oM EOF ¢ acAD &
’ ‘!~
Giuen W il RETURM Pee)
CALL W PEMOE
Pl [T DRCSUR IS

A/
COMMENT LINEL

CommEnT Line: RESET \
|ng) el o COMMENT LIMNE3 cae
COMMENT COMMENT LINE4 FESET

-
x5 - xe
d d

o .o
f&n”'s&(".! P

o e
[} s T o

COMrFARE

r
2

W
ni
&

S

$4~0 T '
—

<

P A

- L FW

e

TN

o/ tEalLce
d

DEALLCC | \ 1 UMITS

e
(Al
-

SUSPEND

.'

LW

—_

-

o4 A

CESTRYY ~

-
m
NG
y|
v

‘l'h.'v*-'

—{
T
>

(]

m

LY
e

,%'l- L9

1Dy

EJAL

.
«
)

e ——— e e e e
'y

s

[SO - - -—

A dT e T
Nl ‘

i L.) |
ETRG i o f ‘

)

2.2
T _»

|

Flgure 3-12. Graphical Representations of Process Primitives

"
] 3-23 N
)

s
o
»
-~ >

Mt e Ry e e ity e e e e e e - ce e me
AL A et e e “ 7w N AP R L S . N e T N o e - Te T e L e e "
. s e L A s o L S oy e S e e e A s e P T T P T N A BT A A A AN L N

.
R -

A bl R R Rt Ba® Lt d B A AR LR A Roa BN B0 05 g VAR, 20,0 L Sa8 Sal b b O Sriod G 0 \e pR b ahi aAe ol At Ui R A AT el Jad Sk Ral tedo it the Rig &4 ¥ >

(N
~
X
-~
o
»
»
=
PRIMITIVES / ACTION !
3.9.1 ACTION <
—_— f‘
The ACTION Primitive represents the consumption of time for an activity that "
consumes time. The ACTION Primitive is used to model the time to perform some !
real work event such as a man's activity or a machine'’s activity. An Action . byt
Primitive can represent both interruptible and noninterruptible tasks (i.e.,
tasks which can start up where they left off after being stopped due to a loss f,,j
of Resources, or tasks which must be completed in one uninterrupted session). o
The time consumed by an ACTION Primitive is determined according to the oy
selected distribution function (described below). The form for an ACTION o
Primitive is shown in figure 3-13. “J
Wy
)
PARAMETERS FOR ACTION 2
Ay
ACTION MAME ; OPTION: GES : .
) R orviov: ECEE metHoo: R v
MEAM TIME: DELT& TIME: IO EEWSECONDS >
I I SECONDS | -
Y
commenT: R
)
l\
Y
gy,
Figure 3-13. Form for an ACTION Primitive =
o
;
Following is a description of the fields of an ACTION form: L-"
-
ACTION NAME: A name assigned to the Action. b
7.
OPTION: Specifies disposition of the Action upon regaining ;
Resources that were lost due to pre—emption by a higher <)
priority Process. Valid options are RESTART and RESUME.
RESTART indicates that the Action must be restarted after L
being interrupted. RESUME (the default) indicates that Y
s the Action can continue where it left off. u
" :\ ,
y METHOD: Distribution function type, which may be: CONSTANT, ~
" EXPONENT, LOGNORML, NORMAL, UNIFORM, GAMMA, ERLANG or ::
: WEIBULL. (The random number seed used for statistical o
functions can be controlled by the user in the AUI.) ™
A '-.
MEAN TIME: Typically specifies the average duration time of the T
Action. This parameter varies in meaning depending on .
the METHOD selected. For CONSTANT, it specifies the ',"':\
exact duration value. {or WEIBULL, 1t specifies the N
distribution's scale parameter. For all other e
D methods, it specifies the mean duration.
X
oy
-
Py
3-24 I\
; A
» f‘:‘

B et L B o 2l el obh e b s Bt
LA W T N A N T . L T N Wl a N a NV Ny N g W WL W -

-

DELTA ‘T{MB: This parameter varies in meaning depending on the
METHOD selected. Typically it specifies the
variation, about the mean, in the duration times.

AT Y T
- L2

Specifically: i
CONSTANT - inapplicable (i.e., leave field blank) b
L] '
EXPONENT - inapplicable (i.e., leave field blank) 2
|
LOGNORML - standard deviation $
e
NORMAL - standard deviation _-;
%
UNIFORM - range about the mean (i.e., the ;::
difference between the largest possible ,
duration and the mean duration). "
.
GAMMA - K ;::T
R
ERLANG - order of distribution function o
-
WEIBULL - shape parameter *
|
NG
UNITS: The time units used in specifying the duration of the)
Action. The valid entries for this field and their gy
meaning are as follows: ::'_'.
Form entry Meaning -
nseconds (ns) - nanoseconds "'.’,r
useconds (us) - microseconds o
mseconds (ms) - milliseconds ’y
seconds (s) - seconds ::
minutes (m) - minutes .
hours (h) - hours '-_.
days (d) - days *'.;
The default value which is automatically placed in the ;
form is SECONDS, but the user can change this default by 3
using the Design User Interface UNITS command (sec scction e
6.1.9). L
o
COMMENT : Any user comment. ﬁ:-
1’10
a \
2%
.
v
s
N
i.\
o
2
v
3-25
N s N e s A Sy NN N S A R N Bt X

PPV ey

Lam e e

e TR APSEEEENTNWETTANEERS. TV W N TR

S T T N

PRIMITIVES / ALLOC

3.9.2 ALLOC

The ALILOC Primitive indicates the allocation of (request to use) a Resource
which is needed by the Process. Whether a Resource requested by the ALLOC
Primitive is actually obtained by a Process depends on a number of conditions,
as described in the section on the Resource entity, section 3.6. If a
Resource unit is in the idle state, it is available to be allocated to the
requesting Process. If the Resource is busy, then allocated Resource units
are checked to see if a Process can be preempted by priority (priority is
inverse - priority 1 preempts priority 2) unless the Resource is protected
with a LOCK primitive. The form for the ALLOC Primitive is shown in figure
3-14.

PARAMETERS FOR ALLOCATE :
ALLOCATE RESOURCE tere: R
NUMEER OF UNITS REQUESTED :[NNNNEN

PARRTIAL-ALL ALLOCATION: PART LAl

ALLOCATION PRICRITY: $FRIOGRTY

ComenT .

Figure 3-14. Form for the ALLOC Primitive

Following is a description of the fields in the ALLOC form:
ALLOCATE RESOURCE NAME: A reference to a Resource

NUMBER OF UNITS REQUESTED: The number of Resource units to be
allocated. 1 is the default.

PARTIAL/ALL ALLOCATION: This specifies whether the Resource units
will be allocated as they become available
(PARTIAL) or only allocated simultanecusly
when they are all available (ALL). PARTIAL is
the default.

ALIOCATION PRIORITY: The priority to be used to determine which
allocation request will be satisfied in
the case of Resource contention. SPRIORTY
is the default and evaluates to the
priority of this Process.

COMMENT ¢ Any user comment.

3-26

T N s e L T N NS et

-ay

'\"\I'I{'u"‘v
P N L

'.} V’\';: -

s

Lol

XAy

FAIEIL T
v QAR LA

[y SO I L AR L
7,)-_'.'-"_'v_"

SRl

nw

I
2Tty

N

L

P

>

a8 A . . N " s ~ o v .
A AT A AT A A N A A ."f:'f:.f AP RN R AT

%
R

e

lfl<‘;’ rr

-

»IFESL

7 a™

;’J-'f:’-‘-"

a L. s, 4 %

v
[

e e - e e
[

Y AN

L)

3.9.3 ASSIGN

The ASSIGN Primitive 1s used to set the value of the following references:

1. a global Variable

2. a local (to the executing Process) variable

PRIMITIVES / ASSIGHN

3. the attribute of an Item (currently attached to the Process)

4. the attribute of a Resource

5. SCNODE (see section 3.17)

6. the attribute of a Process

Values that can be accessed for the assignment are:

l. signed, single precision, real or integer numbers

2. SCLOCK (see section 3.17)

3. global variables or Constants

4. local variables

5. Resources with any of the qualifiers NWAITQ, NBUSYQ, NINACTQ or
NIDLEQ (see section 3.13)

6. Item attribute

values

7. Queue gualifiers NQUEUE or TQUEUE (see section 3.13)

8. Resource attribute values

9. Process attribute values

19. an Item name

11. a Resource name

12. a Process name
13. A Queue nume
4. » Table nume
15. an Action name

16, SHODE (s 30

My ke] ey e ™
M AT~ A

¥

tion 3.17)

otk b

3-27

‘. ’ “. v'_ -* ‘J‘ ‘.-:.b-'_- ‘R -}: P p .."-.. LRI .

.

BRSNS AL Rl S Gl L Ga G0 a0 GE LI UL AL a'0 8 a0 aRY s pAR o0e aBat R b bt 0g0 bt des Dot et RS a8 R R b Ao i B0 JA SR el g tpie AR AR AR A A it

o

Yy a_w _m_» -
v

gy

KAy

"AM}

%y

e e s
I S

PR

R P In] P

“r

'\ A

-
'-

F] .: .,I k' '..

"~

‘.'.‘.—\'.SS'-‘Y Ny ST

-

o e

-

< L

]

e

A

e

o]

»,
. v

el e, J‘ l ’.r,f 'I.'q'.\'....

]
\

Ve 7~

LA R S
v
.'_l

X KNSR

17. SNXTNODE {(see scction 3.17)

18+ SLINK (see section 3.17) .

19. STASK (see scction 3.17) QV-;
20, SCNODE (see section 3.17) . 34"
21. an alpha literal (first character is $) (see section 3.16) .&\
The form for the ASSIGN Primitive 1is shown in figure 3-15. E"
v

kl

PREHMETERS FIOF w33 I0N
|J1:_ l:Jl:—
T
o |
commen "

Figure 3~15. Form for the ASSIGN Primitive

In the form, V1 and Ql are used to reference the current value, and V2 and Q2
are used to reference the value being set. For accessing values such as local 7
variables, the simulation clock, etc., only the "V" fields need to be used.

If the user is accessing an attribute of an entity, such as an Item, both the
"V" and "Q" fields need to be used. The "V" field contains the name of the
entity (Item, etc.) being accessed, and the "Q" field contains the name of the

o

attribute of the entity whose value is desired or being set. -
. . . . o
Following are examples of some typical entries:
V1l: Item Vl: Item Vl: Variable -~
Ql: attribute 0Ql: attribute Ql: .
V2: Item V2: Variable V2: Item)
Q2: attribute Q2: Q2: attribute :
N
Vl: Variapble V1l: Constant V1l: Constant .‘;
0l: Ql: Ql:)
V2: Variable V2: [tem V2: Variable . '\
Q2: Q2: attribute Q2: :
Ny
COMMENT : Any user comment. s
»
Note that it is the entity specified by V2 and Q2 that takes on the new value . o
specitied by V1 and Q1. r
-
.~'
v
if
3-28 i&
e
]
W,
5
o P P P P PP T A .. A T AT T m " a T a™ T . " va g el - - " "Rt s e -
R N N e N s L 4 e S L o AL

- - -

\:'.‘.'.“i..l l,v"'f'.ti AOSONS . - \J ‘- , .Q' -'(l‘.u . . '. {‘;‘:'xi‘l.";igﬁ{‘

PR ' ry . fad’ oY) o, -,) » .l ol “Bbac AL *aks ‘A Bl 3 - " A's &Va AL Yy

,
:

,

:

,

14

:

1

I

[}

| &

13

F)

1 3

| §

i,

[3

3

: 4
s
s v

LXAAS

-

PRIMITIVES / BRANCH

a_"
. v
L

ol

3.9.4 BRANCH

5 " h

The BRANCH Primitive indicates an unconditional branch to a named entry point.
It is used for Process execution sequence control. The form for the BRANCH
Primitive is shown 1n figure 3-16.

AT

Yy 5y b

FARAMETERS FOR BRAMCH:

erancH To Lesel : [
comen :

"y
wn

Cr

ros
s

Figure 3-16. Form for the BRANCH Primitive 1

Following is a description of the fields in the BRANCH form:

[
Pl

LABEL: The entry point to which the Process execution is to go
(which must be defined by an ENTRY Primitive).

*r
"
<

YRS

COMMENT : Any user comment.

“"(ll."': lr' .;'." i

LA
.

LS

Ia? S 8 A0 SN B FO RV A% RN 30, AR, "0

' m

> -
B h

VISP, L,
t'&'\'.‘.‘\'.'b

PRIMITIVES / CALL

3.9.5 CALL
The CALL Primitive triggers exccution of the called Process.

A CALL has one of three options (1) WAIT, (2) NOWAIT and (3) BLOCK. If a
Process is called with the option WAIT, the calling Process will suspend
execution until the called Process is completed. If a Process is called with
the NOWAIT option, both called and calling Processes will exccute
simultaneously and will have no further communication. If a Process is called
with the BLOCK option, the two Processes will execute in parallel until a WAIT
Primitive is reached in the execution of the calling Process. When the WAIT
Primitive is reached, the calling Process suspends execution until the called
Process(es) camplete(s). The principal purpose of the BLOCK option is to
allow the calling of several different Processes, all of which must be
canpleted before the calling Process will continue. If several Processes are
called with the BLOCK parameter, the calling Process will suspend at the WAIT
Primitive--whose presence somewhere below such a CALL Primitive is
obligatory--until all of them have completed execution.

> »
fb%ﬁfk?f#x“"

Two of the three kinds of Processes can be triggered via the CALL Primitive:
parameter passing Processes and standard Processes. The triggering of an Item
passing process is discussed in the section describing the SEND primitive. In
triggering a parameter passing Process with a CALL Primitive, parameters are
given to the called Process and/or parameters are returned to the calling
Process. Parameters can be numerics, string literals, keywords, or the names
of Items, Queues, Resources, Processes, Tables, and Actions. Parameter
passing Processes with return parameters can be called only with the WAIT
option. Standard Processes, which neither give nor return information may be
called with any of the three options WAIT, NOWAIT and BLOCK.

The CALL also requires that a priority be established for the called Process.
Priority is inverse, priority 1 preempts priority 2. This priority may be
used by the called Process when competing with other Processes for avallable
Resources (through the ALLOC Primitive with SPRIORTY, see section 3.9.2).

ST

The fomm for the CALL Primitive is shown in figure 3-17.

P AL 4
r}
’I'l,l'.‘

l.‘
.
s e

el .
"(" ‘e N Ll

S0 S SENENRN IR,

v r .
»

3-30

-
>

s g

N AN NN IR Tyt i AT A P T T TS S o SRR

fﬂ"\n‘."f.‘l’_’\ﬂ'\'fﬁ"’f X TN

|
3
4
N
J
b
»
* GIVEN:
¢
5 FETURNHS ;
s
>
p
3
b
)

CALLED-PROCESS NAME:

WAIT/NOWAIT/BLOCK :
PRIORITY:
GIVEN:
RETURN:

:

[COMMENT :

:

|

]

y

r-

}

S

|

]

P

'y '\I‘{J.C-ﬁ;l 'n‘{f,:-f‘.;-" '-";f.;-f‘.;l_;f_;-".;-’s

-

FERAMETERS FOR CALL

CALLED-FROLCESS NAME: _
WATT HOWRIT. BLOCK « QTG FRICRITY: _

s :

Figure 3-17. Form for the CALL Primitive

Following is a description of the fields in the CALL form:

The Process to be triggered.
Explained above. NOWAIT is the default.

The priority associated with the triggered
Process (discussed above).

Up to six parameters whose values are to be
communicated to the called Process. Left blank
if called Process is a standard Process.

Up to six parameters whose values are to be

returned to the calling Process. Left blank if
called Process is a standard Process.

Any user comment

3-31

w

T ™ ™M - ™ L Y} - gL m W e " T a T e va
Brin /5,75 P00 R, 1 Y S G A o S R USRS

<

[A A Y
a 2 T JhY

hJ

~wraes

%

(4

[T
S

o5

gy ¥ R
L L
SR

i L, 5%
S0

RALCLALLLELEGIAL SELE S Sap it Vo tas o St ¥ 0 Rud Pal = 8 Sutoiul dah 0t ol St Sl Saty ot ‘s "akeaieont ted o N N Y Y Y Y IV Y YRR

3.9.6 COMMENT

The COMMENT Primitive is used to add descriptive text to a Process. It has no
eftect on the operation of the Process. It is used simply to make the Process
more understandable. A COMMENT Primitive can be placed anywhere within a
Process after the START Primitive and before the END Primitive, and there is
no limit to the number of COMMENT Frimitives within a Process.

The form for the COMMENT Primitive is shown in figure 3-18

COMMENT :

Following is a description of the fields in the COMMENT form:

PARAMETERS FOR COMMENT: The fields provide the user with space to enter up to
four lines (64 characters each) of descriptive text.

e
oy

Note: In the simulation output report, each line of a COMMENT Primitive has
an asterisk (*) appended to tne beginning of the line. This asterisk is used
by AISIM to recognize the COMMENT.

b4

s s .

g ¢ x"

Cy Y
L)

3-32

T
f Figure 3-18. Form for the COMMENT Primitive
i
F
i
)

BN

VYA RN

»

PRIMITIVES / COMPARE

Y

v

3.3.7 COMPARE

The COMPARE Primitive is used to model decisions based on user-controlled
variables or the values of system keywords and attributes. The COMPARE
performs the following operation:

-\ls{'.’\ » :{- .-

IF P [S TRUE, THEN GO TO A

. t—
¥

wher:a:

“A" is an ENTRY label (defined by an ENTRY primitive) which is branched to if o
P is true.

"P" 1s a predicate which can be TRUL or FALSE. It consists of a phrase:
X1l OP X2 .

X1,X2 can be:
(1) signed, single precision, real or integer numbers

(2) global variables or Constants

(3) local Variables

N o
l“l' :"-"S"" P

P
S

(4) Resources with either NWAITQ, NBUSYD, NINACTQ or NIDLEQ
attributes (which cannot be modified by the user) (see section

3.13) 2
.
(5) SCLOCK (seec section 3.17) o

{(6) a value specified by an Item name and attribute

.-
L3

(7) a value specified by a Resource name and attribute

AR P R
AR

(8) a value specified by a Process name and attribute

(9) an ltem name

PRV T
'l

(10) a Resource name

(11) a Process name

'l 'l & .l

...,' "’ l‘ —l’ .

(12) a Queuc name

(13) a Table name

(14) an Actinn name

(15) $NODE (see section 3.17)

(16) SAXTNODE (see scction 3.07)

3-33

- o, L} mTs s

T S S e T e A TR T e v e W 5 e T O AR I -
R e A T A o s o A A D I I i ey

UM e L R B T T T T I N T I o T N T T T P P I S P S o o E T F N E P T F ISP T
Cs

A
pot

‘.l- Y -$-
LA I‘.If

.y

)

(17) SLINK (see section 3.17)

(18) STASK (see section 3.17) .

(19) SCNODE (see section 3.17)

Lo ph oh o o 8 B 4
3o Jo Jo |

(20) an alpha literal (first character is $) (see section 3.16)

(21) a Queue with either NQUEUE or TQUEUE as an attribute (which s
cannot be modified by the user) (see section 3.13)

4

Ty
, \I'-. oy

"OP" is one of the following operators:

Y Y R
['4

e u
.

-,

EQ - equal to,
NE - not equal to,
GEL - greater than or equal to,

GT - greater than,

J
b
b LE - less than or equal to,
LT - less than.
Operation - "X1" is compared to "X2" using real, single precision arithmetic.
{ If the comparison results in the same relation as "OP", then "P" is set TRUE
, and a oranch is made to label "A"; otherwise, no branch is made (the next

Process Primitive is exccuted).

—-——w

The form for the COMPARE Primitive is shown in tigure 3-19.

FHFAMETERS FOR COMPAFE
IF oFerwte U < -1 1R R
F'ELQTIOH:.
OFERRHD E‘:— WusLIFIER F_‘:_
eFanicH 1O : R -
comenT o

]
3
!
|
i
E Figure 3-19. torm for the COMPARE Primitive
H
|
b
] e parameters ot the torm are Litled in as tndicated apove. .'
b
!
u
t
|
|

P ot T W, ‘I,‘(\'.r AN as
- (]

R 2 N AL e e SR L S S a SRS Vol P I S B T S ol S S0 I I R N P L RS
AT RO A A A P R A iy R A s T A s PR A AR o SR P TS W PRV MO DT P PRI Vi . Sy

B A R R Ny N N Y Y N SV Y W N T R T R T S F N R S T T T S S T OO O RO R RO TR T

\

v

Ly

A

' PRIMITIVES / CREATE

. 3.9.8 CREATE

}

N The CREATE Primitive is used to create Items (note the SEND Primitive can also

N create Items as part of its function). The initial attribute values (defii.u

A when the Item 1s declared) are assigned upon creation. Each Item created is

{ . attached to the Process. Two Items of the same name cannot exist in a Process
at the same time. Item definitions are specified in the DUI. The form for

. the CREATE Primitive is shown in figure 3-20.

‘. PURAMETERS FOR CREATE

(TEMS T BE CFEATED ARE:

. T - F _F
cormrenT -

Figure 3-20. Form for the CREATE Primitive

Following is a description of the fields in the CREATE form:

ITEMS: references to distinct Item types, instances of which are
to be created

COMMENT: Any user comment.

T AT A 0 7 N S A N e N e e g 0 R N g g N A T

2

ey

LA

&

LA AR
a

5

PRIMITIVES / DEALLOC

3.9.9 DEALLOC

The DEALILOC Primitive indicates the release of previously allocated Resources.
It is used to represent the release of a Resource (making it available to
another request) upon completion of a job. The form for the DEALLOC Primitive -
is shown in figure 3-21.

PARHMETERS FOR (EALLICHTE:

venLLocaTE rESOUFCE nere: R

NUMBER OF UMITS UDE~LLOCHTED :_
coment :

Figure 3-21. Form for the DEALLOC Primitive

"

SN,

- ‘..

Following is a description of the fields in the DEALLOC form:

LA

RESOURCE NAME: A reference to the Resource to be released.

A
o<

NUMBER OF UNITS: A reference to the integer number of Resource units
to be returned to the idle state. 1 is the default,

h YT A4
P Y

COMMENT : Any user comment,

LA 4

.','("' NS

I,

PR A L N
. B X .
2 _2

.
.y,

O.I

SRR

s
« s v
P A
-
(Y

> S @

L
» sl

4

Pd
o

3-36

Ead
L4
.

5

AOEATA DA A O A IR TR L LI ORI L COLUAN

a

P LA A S OL L)) V) &) Sl G0 S Top Nak Vel Bl Sl AL R AR ALY

-

e

TR IS, TR TeRTTeeTTw T w v --—

i

ST,

PRIMITIVES / DESTROY

3.9.10 DESTROY

The DESTROY Primitive is used to eliminate Items from the system, marking the
end of the time in system. When an Item is destroyed, statistics on its tim

in the system are tabulated for the simulation's Item report.

The form for the DESTROY Primitive is shown in figure 3-22.

FARRMETERS FOF DESTROY

ITEMSZ TQ BE LESTRUVED AFRE:

T - r I 7
conmen” :

Figure 3-22. Form for the DESTROY Primitive

Following is a description of the fields in the DESTROY form:

ITEMS: References to distinct Item types, instances of which are
to be destroyed.

COMMENT: Any user comment.

3-37

-.,-.I_,-‘.,:.J,-.I:.,%Iw_.y,\"\f\"\f

SRR q
‘n:‘; t’ /’

"P"J‘h' y S _‘\‘\ L Ny \;_\‘ YR SR R

A

YO PN

o
-

« e .
a8,
.

LA

.",vr"t" -" .
NEA A

n g e B4
% %
Rl e

-

¢

v L4

Attt
AL

.‘. I‘r{ LA 4
'y 1,

L " 'a‘-l .1
2t

7

AN

v e
[3
¥

4 &
.

Pt
".{51.5.. v

LA AL A Lo
AL N

v £
.
o

T T N A G T T T A I R A e N N Y Y A Y Y Y N
v ¥ F R T P TR TR T P T ! ety Joa bte B PILIY

PRIMITIVES / ENTRY

3.9.11 ENTRY

The ENTRY Primitive is used to define entry points fram branches contained in
the Primitives BRANCH, PROB, COMPARE, TEST, READ and LOOP. The form for the
ENTRY Primitive is shown in figure 3-23.

PARAMETERS FOR ENTRY:

' enTRy LegEL: (R
cormenT :

Figure 3-23. Form for the ENTRY Primitive

Following is a description of the fields in the ENTRY Primitive:

ENTRY LABEL: The 1~8 character name of the entry point used by the
Primitive(s) which transfer control to it.

COMMENT : Any user camment.

T LRI g
b _‘-}%}S .‘.’{I /'.'.: <

"
1

3-38

e T TR T R R TR T T TR TR TR TR TN . TR T N T T T TR T IR RN AR

N a1 e a4 a0 0 o0 a8 " 10 s 8" il "R b’ aBa® 2’ ata? Ba®ata ot But Aot Ba' WPV T s
D) 'Y n wrm ¢ . (W W Wy Wa WY, W VR W \’ M $ gubiant

- R oy oS (") oWl of X w

LAy

| 2
Y »
3 PRIMITIVES / EVAL ;
P
. 3.9.12 EVAL
"
ﬁ The EVAL Primitive is used to perform arithmetic functions within a Process so
) that model logic and timing can be a function of variables rather than a
9 constant. This Primitive can also be used to access a Table. The EVAL
E . Primitive is different from the other AISIM Primitives in that one of the EVAL
- parameters is a free-form expression whose result is assigned to the EVAL
variable. The expression can be camposed of references to several AISIM
: constructs within a single expression.
¢
,: The valid functions that can appear in an expression are the following:
K-
* opl + op2: add - Returns the sum of opl and op2
. opl - op2: subtract - Returns the difference of opl and op2
»3 opl * op2: multiply - Returns the product of opl and op2
opl / op2: divide - Returns the quotient of opl and op2
¥ opl**op2: exponentiation - Returns the value of opl raised to the
power op2
absolute (opl) - Returns the absolute value of opl
g arcosine (opl) - Returns the arc cosine of opl in radians;
- -1<opl <1
~ arcsine (opl) - Returns the arcsine of opl in radians
- -1 <opl <1
S arctan {(opl) - Returns the arc tangent of (1l/opl) in
-5 radians; opl = (anglel/angle2); opl < > 0.0
ks beta (opl, op2) - Returns a random sample from a beta
N distribution
b opl = power of x; opl > 0
. op2 = power of 1-x; op2 > 0
- binomial (opl, op2) - Returns a random sample from binomial
; distribution
. opl = number of trials
- op2 = probability of success
= cosine (opl) - Returns the cosine of opl in radians
v Erlang (opl, op2) - Returns a sample value from an Erlang
- distribution
M opl = mean

op2 = k (lnteger order of function)
exponent (opl) - Returns a random sample from an
exponential distribution
) opl = mean
; gamma (ool, op2) - Returns a random sample from a gamma
distribution
opl = mean

- twt

f . op2 = Kk

1 integer (opl) - Returns the integer part of opl

o loge (opl) - Returns the natural logarithm of opl
- . opl > 0

3-39

E)
Ly
-
)
¢

wav = ~ ME® R LW YW A T I e e I T T N TS S TR IO T TR YE
F " ‘{\ T {": \t‘n‘cﬁ}{'}{\ .\'_'.'{_\.f‘.‘(:\‘:.\'t\"f\‘C\f\.‘f&*\f\.‘f*&f&‘*ﬂ.'\b-..A

N N O o I T i AT Ty e, . LA A .

B TS I ¥ T 2% 0N, e, - WL W

i{
ity
0
¢,
oy
.
a_:_
hy
-"‘
lognoml (opl, op2) - Returns a random sample from a normal =
distribution *
opl = mean T
op2 = standard deviation .
1ogl0 (opl) ~ Returns the cammon logarithm of opl My
Opl >0 ..
normal (opl, op2) ~ Returns a ran